C-EMBEDDED SUBSETS OF PRODUCTS

N. NOBLE

ABSTRACT. It is shown that each dense subset of $R^{\rm ll}$ is z-embedded, from which it follows that a dense subset is C-embedded if and only if it is G_{δ} -dense. These results extend to, for example, all products of separable metric spaces.

All spaces are assumed to be completely regular Hausdorff; R denotes the real line and vX the Hewitt realcompactification of X. Recall that a subset X of Y is z-embedded in Y if each zero set of X is the intersection of X with some zero set of Y. A subset of Y is G_{δ} -dense in Y if it meets each nonempty G_{δ} -set of Y, and the G_{δ} -closure of a subset is the largest subspace in which it is G_{δ} -dense.

THEOREM 1. For X a dense subset of R^n , the following conditions are equivalent:

- (i) Some superset of X in R^n is vX;
- (ii) the G_{δ} -closure of X in \mathbb{R}^n is νX ;
- (iii) the G_{δ} -closure of X in \mathbb{R}^n is realcompact.

COROLLARY. For $X \subseteq R^n$, $\nu X = R$ if and only if X is G_{δ} -dense.

Theorem 1 follows immediately from the fact that each space is G_{δ} -dense in its Hewitt realcompactification but is not G_{δ} -dense in any larger space, a theorem of Hager and Johnson that a G_{δ} -dense subset is C-embedded if and only if it is z-embedded [2, Proposition 3] and the following:

Theorem 2. Each dense subspace of R^n is z-embedded.

PROOF. Let X be a dense subspace of R^n and let Z be a zero set in X, say $Z = \bigcap_n U_n$ where each U_n is open and contains the closure in X of U_{n+1} . Let F_n be the closure of U_n in R^n ; then $F_n \cap X = \operatorname{cl}(U_n)$ so for $F = \bigcap_n F_n$, $F \cap X = Z$. Thus it suffices to show that F is a zero set.

Since X is dense, each F_n is the closure of its interior, so by [6, Theorem 3] each F_n has the form $\pi_n^{-1}(H_n)$ where π_n is the projection onto some

Received by the editors February 12, 1971.

AMS 1969 subject classifications. Primary 5425, 5452, 5453.

Key words and phrases. z-embedded subsets, C-embedded subsets, product spaces, Hewitt realcompactification.

614 N. NOBLE

countable subproduct and H_n is a closed subspace of that subproduct. It follows that F also has this form, say $F = \pi^{-1}(H)$. But like any closed subset of R^{\aleph_0} , H is a zero set. Therefore F is a zero set, as desired.

Notice by the same proof, Theorem 2 holds with R^n replaced by any product space Y satisfying:

- (i) Each finite subproduct of Y (and hence Y itself [5, Corollary 1.4]) satisfies the countable chain condition, so the structure theorem for regular closed sets holds [5, Proposition 2.2].
- (ii) Each finite subproduct of Y (and hence each countable subproduct of Y, by [3, Proposition 2.1]) is perfect, i.e., has each closed subset a G_{δ} .
 - (iii) Each countable subproduct of Y has each closed G_{δ} a zero set.

In particular, Theorems 1 and 2 hold with R^n replaced by any product of separable metric spaces. Regarding further generalizations, note that if X and Y are pseudocompact subsets of βN which contain N and for which $X \times Y$ is not pseudocompact, then $X \times Y$ is G_{δ} -dense in $\beta N \times \beta N$ but is not z-embedded (since if it were it would be C^* -embedded which, by Glicksberg's Theorem, is the case only if $X \times Y$ is pseudocompact). Theorem 1 will be applied in [4] to characterize spaces Y for which C(Y) is realcompact in various standard function space topologies.

REFERENCES

- 1. H. Corson, Normality in subsets of product spaces, Amer. J. Math. 81 (1959), 785-796. MR 21 #5947.
 - 2. A. Hager, C-, C*-, and z-embedding (to appear).
 - 3. R. Heath and E. Michael, A property of the Sorgenfrey line (to appear).
 - 4. N. Noble, Realcompactness of function spaces (to appear).
- 5. N. Noble and M. Ulmer, Factoring functions on Cartesian products, Trans. Amer. Math. Soc. 163 (1972), 329-339.
- 6. K. A. Ross and A. H. Stone, *Products of separable spaces*, Amer. Math. Monthly 71 (1964), 398-403. MR 29 #1611.
- 7. M. Ulmer, Continuous functions on product spaces, Doctoral Dissertation, Wesleyan University, Middletown, Conn., 1970.

CANARY ROAD, WESTLAKE, OREGON 97493