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C-EMBEDDED SUBSETS OF PRODUCTS

n. noble

Abstract. It is shown that each dense subset of Rn is r-

embedded, from which it follows that a dense subset is C-embedded

if and only if it is G^-dense. These results extend to, for example,

all products of separable metric spaces.

All spaces are assumed to be completely regular Hausdorff; R denotes

the real line and vX the Hewitt realcompactification of X. Recall that a

subset A of Y is z-embedded in Y if each zero set of X is the intersection of

A with some zero set of Y. A subset of Tis Gö-dense in Y if it meets each

nonempty C^-set of Y, and the Gydosure of a subset is the largest subspace

in which it is Cä-dense.

Theorem 1. For X a dense subset of Rn, the following conditions are

equivalent:

(i) Some superset of X in Rn is vX;

(ii) the Gyclosure of X in Rn is vX\

(iii) the Gydosure of X in Rn is realcompact.

Corollary.   For A£ A"1, vX=R if and only if X is Gd-dense.

Theorem 1 follows immediately from the fact that each space is G6-

dense in its Hewitt realcompactification but is not oydense in any larger

space, a theorem of Hager and Johnson that a GVdense subset is C-

embedded if and only if it is z-embedded [2, Proposition 3] and the

following:

Theorem 2.   Each dense subspace of Rn is z-embedded.

Proof. Let A be a dense subspace of Rn and let Z be a zero set in X,

say Z=n„ Un where each Un is open and contains the closure in A'of

Un+1. Let Fn be the closure of Un in P"; then FnC\X=cl(Un) so for

F=C\n Fn, FC\X=Z. Thus it suffices to show that Pis a zero set.

Since Ais dense, each F„ is the closure of its interior, so by [6, Theorem

3] each Fn has the form 77~1(//„) where irn is the projection onto some
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countable subproduct and Hn is a closed subspace of that subproduct.

It follows that F also has this form, say F=tt~1(H). But like any closed

subset of RKo, H is a zero set. Therefore F is a zero set, as desired.

Notice by the same proof, Theorem 2 holds with Rn replaced by any

product space Y satisfying:

(i) Each finite subproduct of Y (and hence Y itself [5, Corollary 1.4])

satisfies the countable chain condition, so the structure theorem for regular

closed sets holds [5, Proposition 2.2].

(ii) Each finite subproduct of Y (and hence each countable subproduct

of Y, by [3, Proposition 2.1]) is perfect, i.e., has each closed subset a Gs.

(iii) Each countable subproduct of Y has each closed Gd a zero set.

In particular, Theorems 1 and 2 hold with Rn replaced by any product

of separable metric spaces. Regarding further generalizations, note that

if X and Y are pseudocompact subsets of ßN which contain N and for

which XxY is not pseudocompact, then XxY is G^-dense in ßNxßN

but is not z-embedded (since if it were it would be C*-embedded which,

by Glicksberg's Theorem, is the case only if Xx Y is pseudocompact).

Theorem 1 will be applied in [4] to characterize spaces Y for which C( Y)

is realcompact in various standard function space topologies.
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