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MONOTONICITY OF POSITIVE SEMI DEFINITE
HERMITIAN MATRICES1

russell merris and stephen pierce

Abstract. Inequalities which compare elements of the convex

cone of positive semidefinite hermitian matrices with products of

roots of elements are proved. They yield inequalities for Schur

functions (generalized matrix functions) which, when specialized

to the determinant, give a result of R. Bellman and L. Mirsky.

Introduction. The following result was proved in [2] and [7]. (See also

[1, p. 63] and [4, p. 115].) Let 61,---,6k be positive numbers such that

0, + - • - + 6k=l. Let A-i, ■ • ■ , Ak be positive definite hermitian n-square

matrices. Then

with equality if and only if Ax = - ■ -=Ak.
In this note, we observe that the above result generalizes in several

directions (Theorems 2,3, and 4). Theorem 1 provides the case of equality

in several of our inequalities.

When A is positive semidefinite (positive definite) hermitian, we write

A^O (A>0). IfA^O, B>0, A-B^O, we write A^B.

Results. Let H be a subgroup of Sn, the symmetric group. Let % be a

character on H. Define d(A), which depends on H and %, by

where A — (a{J). These functions were studied by Schur [8]. If H=Sn and

^=sgn, then d=dtt. If H=Sn and %=\, d=per (permanent).

We will frequently use the result in [6] that A^.B implies d(A)^.d(B).

Theorem 1. Suppose %=\ or j=det. If A^B and d(A)=d(B)?±0, then

A=B.

We will prove Theorem 1 later.
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Theorem 2. Let .^.-^O, i=\, ■ • ■ , k, and suppose the At are pairwise

commuting. If 0U • • ■ , 6k are positive numbers such that 0i+- ■ • + 6k=l,

then

I Mi ̂  IT *V
i=l i=l

with equality if and only if Ax = - • -=Ak. Thus,

cd d(iy^d{uA^.

If %=\ or d=det, equality holds in (1) if and only if At=- ■ ■=Ak.

Proof. Since the A/s commute, they can be simultaneously diagonal-

ized. The result then follows from the arithmetic-geometric mean in-

equality and Theorem 1.

Theorem 3.   Let Ax, • • • , Ak be as in Theorem 2. Then,

(2) d ( (|m*)T) ^ n (d(A]'^r.

Proof.   By the extended Minkowski inequality [3],

rf((gM) ) ^2Q<d{A\<").

The arithmetic-geometric mean inequality now yields (2).

Without assuming commutativity, it is difficult to obtain much informa-

tion on Schur functions other than the determinant. Generalizing Mirsky's

method, we can prove

Theorem 4.  Let A^O, B=C*C>0. Let O<0<1. Then

OA + (1 - 6)B ^ C^C^AC-yC

with equality if and only if A=B. Thus

(3) d(0A + (1 - 0)B) ̂  diC^C^AC-yC).

If d=det or         equality holds in (3) if and only if A=B.

Proof. For X^O, OX+l-O^X6 with equality if and only if A==l.

Thus, for any H^O,
6H + (1 - 0)/ |£ He

with equality if and only if H=I. Take H=C*-1AC~1.

The Bellman-Mirsky result follows from any of Theorems 2, 3, or 4,

using the multiplicativity of the determinant.
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Proof of Theorem I. Let A1=- • -^Xn>0, p^- ■ -^,«„=0 be the

eigenvalues of A and B respectively. A standard argument using the

Courant-Fischer minimax theorem proves that A^B implies A,^/^,

i'=l, • • • , n. Thus if A^B and det(^)=det(5)^0, A^^, /=1, • • • , n.

Hence trace (A—B)=0, and A=B.

If gal, our proof requires the machinery of the associated transforma-

tion.

Let Kbe the inner product space of column n-tuples. Let E={e1, ■ • • , en}

be the standard basis, i.e., e3 has a 1 in position j and 0 elsewhere. Let

® V be the nth tensor power of V. If xu ■ ■ • , xneV, write xx®* • -®xn

as their tensor product. For aeS„, let Pia-1) be the linear operator defined

by
Ffo-1)*,. ® • • • ® xn = xa(1) ® • • • ® X,,«,,        e V.

Set

t(h,x) = 1 lx{<y)P{<y),
h oeH

where « is the order of H. Write W for the range of T(H, %). Let

xx * • • • * xn = T(H, x)xx ® • • • ® xn.

Let ® y4 denote the nth Kronecker power of A, i.e.,

(® A)xr ® • • • ® x„ = ylx, ® • ■ • ® ^x„.

The space IF is invariant under ® yl since T(H, x) and ® A commute. So,

let K(A) be the restriction of ® A to IF".

The inner product (•, •) on V induces an inner product on ® V which

satisfies
n

(x, ® • • • ® xn, y, ® • • • ® yn) = IX tt)-
(=i

It has been proved, [5, p. 318], that there is a set A of integer sequences of

length n such that the set

K* = ««!*•••-*««,:* "»      • • • > «J eA}

forms an orthogonal basis of W. Moreover, we may assume (1, • • • , n)eA.

For each aeA, let kx be the inverse of the norm of e*. Then

is an orthonormal basis of W. (When a=(l, • • • , n), kx=h1/2.) Suppose

E* is ordered arbitrarily. Let K(A) be the matrix representation of K(A)

with respect to E*. It is known that if /1_0, so is K(A), and A^B implies

K(A)^K(B) (see [6]).



440 russell merris and stephen pierce

Now one can easily verify that the main diagonal entry in K(A) corre-

sponding to the sequence (1, • • • , n) is

h(K(A)ex * ■ ■ ■ * e„, ex * ■ • ■ * en)

- h(Aex * • • • * Aen, ex * ■ • • * en) = d(A).

IfA^B and d(A)=d(B) then, being =0, K(A)—K(B) has a zero row and

column corresponding to (1, •••,»). It follows that

(4) Aex * ■ • ■ * Aen = Bex * • • • * Ben.

For x=\, we can apply Lemma 2.4 of [5] to (4) to see that A=BQ, where

Q is a monomial whose entry in column j is dy Since d(A)=d(B)9^0, we

have IX 4 = 1- Since 5_0, |ot3|2_^o3i for all pairs If oeSn is the

permutation corresponding to Q, then ajj=baU)j dj^bxJlj)aU)b>jlf\dj\.

Hence, XTj °jj =TTi ^y- ̂ ut' ^4 =5implies 0^—6^_0. Also, since d(B)^0,
no row of B can be zero, and hence b^^O for all j. Therefore a3j=Z;3}-,

l^y_n, or trace(A—B)=0, and the result is established.

The authors thank the referee for shortening the proof of Theorem 1.
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