ON ALGEBRAS SATISFYING THE IDENTITY

(yx)x + x(xy) = 2(xy)x

ROBERT A. CHAFFER

ABSTRACT. Simple, strictly power-associative algebras satisfying the identity (yx)x+x(xy)=2(xy)x over a field of characteristic not 2 or 3 have been classified by F. Kosier as commutative Jordan, quasi-associative, or of degree less than three. In the present paper those of degree three or greater are shown to be commutative, which eliminates the quasi-associative case mentioned above.

According to a result of F. Kosier [2, Theorem 4.7, p. 317], the simple, strictly power-associative algebras over a field of characteristic not 2 or 3 and satisfying the identity

$$(1) \qquad (yx)x + x(xy) = 2(xy)x$$

may be characterized as being either of degree less than three, non-commutative Jordan, or quasi-associative. It will be shown in the following that this list of possibilities can be reduced and the following theorem is proved.

THEOREM. A simple, strictly power-associative algebra over a field of characteristic not 2 or 3 and which satisfies (1) is

- (a) a commutative Jordan algebra;
- (b) an algebra of degree 2; or
- (c) an algebra of degree 1.

To prove this theorem we will take advantage of the earlier mentioned result due to Kosier and assume in what follows that A is a simple, strictly power-associative algebra of degree exceeding 2 over a field of characteristic not two or three and satisfying (1). By that result, A is then either a Jordan algebra or a quasi-associative algebra and thus in either case is a non-commutative Jordan algebra [1, Theorem 2, p. 582]. Since the objective is to show that A is commutative and since A is commutative if and only if every scalar extension is commutative, we may assume that K is an algebraically closed field.

Received by the editors March 8, 1971.

AMS 1970 subject classifications. Primary 17A30; Secondary 17A05, 17A15, 17A20. Key words and phrases. Noncommutative Jordan algebra, flexible algebra, strictly power-associative, degree of an algebra, stable algebra.

Notations used here include (x, y, z) to denote (xy)z - x(yz) and $x \cdot y$ to denote xy + yx. Noncommutative Jordan algebras satisfy the identities

(2)
$$F(x, y, z) = 0$$
 where $F(x, y, z) = (x, y, z) + (z, y, x)$,

$$(3) J(x, y, z, w) = 0$$

where

$$J(x, y, z, w) = (x, y, z \cdot w) + (z, y, w \cdot x) + (w, y, x \cdot z).$$

The identity (2) is the linearization of the flexible law, (x, y, x) = 0.

Advantage will be taken here of well-known ([1], [3]) facts regarding idempotents in a noncommutative Jordan algebra. Included in these is the vector space direct sum decomposition relative to any idempotent e; A=A(e,0)+A(e,1)+A(e,2) where $A(e,2)=\{x \text{ in } A:e\cdot x=\lambda x\}$ for $\lambda=0$, 1, or 2. Then A(e,0)A(e,2)=A(e,2)A(e,0)=0, the subspaces $A(e,\lambda)$ are subalgebras for $\lambda=0$ or 2, and $A(e,\lambda)A(e,1)+A(e,1)A(e,\lambda)\subseteq A(e,1)$ for $\lambda=0$ or 2. The last property is referred to as stability. Also for $\lambda=0$ or 2 and x in $A(e,\lambda)$, $2ex=2xe=\lambda x$. Since the degree of A exceeds 2 and since K is algebraically closed, there are pairwise orthogonal idempotents e_1 , e_2 , and e_3 such that $e_1+e_2+e_3=1$. Relative to these three idempotents A has the decomposition, $A=\sum A_{ij}$, $1\leq i$, $j\leq 3$, where $A_{ii}=A(e_i,2)$ and for $i\neq j$, $A_{ij}=A_{ji}=A(e_i,1)\cap A(e_j,1)$. For i, j, and k pairwise distinct, these subspaces have the properties $A_{ii}A_{ij}+A_{ij}A_{ii}\subseteq A_{ij}$, $A_{ii}A_{ji}=A_{ji}A_{kk}=A_{kk}A_{ij}=0$, $A_{ij}A_{jk}\subseteq A_{ik}$, $A(e_i,1)=A_{ij}+A_{ik}$, and $A(e_i,0)=A_{ij}+A_{ik}+A_{ik}$.

We shall adopt the notation that for e an idempotent, for $\lambda = 0, 1$, and 2, and for S a subset of A, $[S]_{\lambda}$ shall denote the set of all components in $A(e, \lambda)$ of elements of S. Similarly $[S]_{ij}$ denotes the set of components in A_{ij} for elements in S. Then for subspaces S and T, the commutative product $S \circ T$ is defined as $\sum_{\lambda=0,1,2} [ST+TS]_{\lambda}$ and $S^{(2)}=S \circ S$. Under this agreement, $S \circ T$ contains ST and TS so that a subspace S is an ideal of S if $S \circ S \circ S$.

If e is any idempotent then the subspace C(e) shall denote the set $\{x \text{ in } A(e, 1) : 2ex = x\}$. Then M(e) denotes the subspace $C(e) + C(e) \circ A(e, 1)$. The subspace $C(e_1)$ is singled out for special attention and is denoted simply by C. Similarly, M denotes $M(e_1)$. The proof of the theorem stated above proceeds by showing that M is an ideal of A. This fact along with the simplicity of A yields the equality C = A(e, 1). One can move then with reasonable dispatch to the commutativity of A. It is necessary to first deduce some preliminary lemmas.

LEMMA 1. If, for any idempotent e, x and y are in A(e, 1) and z is in $A(e, \lambda)$ for $\lambda=0$ or 2 then

(4)
$$[xy]_{\lambda}z = [x(yz) + (1 - \lambda)(ey - \frac{1}{2}\lambda y)(z \cdot x)]_{\lambda}$$

and

(5)
$$z[yx]_{\lambda} = [(zy)x + (\lambda - 1)(ey - \frac{1}{2}\lambda y)(z \cdot x)]_{\lambda}.$$

PROOF. Expanding the identity J(x, y, e, z) - F(z, y, x) = 0 yields $(xy)z = x(yz) + (1-\lambda)(e, y, z \cdot x)$. Equating the components in $A(e, \lambda)$ and noting that $[e(y(z \cdot x))]_{\lambda} = [\frac{1}{2}\lambda y(z \cdot x)]_{\lambda}$ gives the identity (4). The identity (5) is obtained similarly by expanding $J(x, y, e, z) - \lambda F(z, y, z) = 0$.

LEMMA 2. If e is any idempotent then the subspace $H(e)=A(e,1)+A(e,1)^{(2)}$ is an ideal of A.

PROOF. Stability and the definition of H(e) yield immediately that $A \circ A(e, 1) \subseteq H(e)$ and that $A(e, 1) \circ A(e, 1)^{(2)} \subseteq H(e)$. Let x, y, and z be as in Lemma 1. Then $z[xy]_{\lambda}$ and $[xy]_{\lambda}z$ are in H(e) since the right members of the identities (4) and (5) are in H(e). Thus, for $\lambda = 0$ or 2, $A(e, \lambda) \circ A(e, 1)^{(2)} \subseteq H(e)$ and H(e) is an ideal.

LEMMA 3. Relative to the idempotents e_1 , e_2 , and e_3 the equality $A_{ij} = A_{ik}A_{kj} + A_{kj}A_{ik}$ holds.

PROOF. By the previous lemma, $H(e_i + e_j)$ is an ideal of A. The simplicity of A yields $H(e_i + e_j) = A$. The components, A_{ij} and $[H(e_i + e_j)]_{ij}$, of these spaces are then equal and

$$[H(e_i + e_j)]_{ij} = [(A_{ik} + A_{jk})^2]_{ij} = A_{ik}A_{jk} + A_{jk}A_{ik}.$$

LEMMA 4. The subspace $[C(e_i)]_{ij}$ is contained in the subspace $C(e_i)$.

PROOF. If y is in $[C(e_i)]_{ij}$ then y + z = x for some z in $[C(e_i)]_{ik}$ and x in $C(e_i)$. Then $y + z = x = 2e_i x = 2e_i y + 2e_i z$, so since $e_i y$ is in A_{ij} and $e_i z$ is in A_{ik} , it follows that $y = 2e_i y$.

LEMMA 5. If $i \neq j$ then $[C(e_i)]_{ij} = [C(e_j)]_{ij}$.

PROOF. Let x be in $[C(e_i)]_{ij}$. Then $xe_i-e_ix=2F(e_i,e_j,x)=0$. This implies that x is in $[C(e_i)]_{ij}$. Since i and j are arbitrary this completes the proof.

From this point on, C_{ij} will denote the subspace $[C(e_i)]_{ij} = [C(e_j)]_{ij}$.

LEMMA 6. If e is an idempotent, y in $A(e, \lambda)$ for $\lambda=0$ or 2, and x in C(e) then xy=yx.

PROOF. Expanding 2F(y, e, x)=0 yields $[1-\lambda](xy-yx)=0$ and since $\lambda \neq 1$, xy=yx.

LEMMA 7. If y is in $A(e, \lambda)$ for $\lambda = 0$ or 2 then $yC(e) + C(e)y \subseteq C(e)$.

PROOF. Let x be in C(e). By Lemma 6 and by identity (2), $F(e, x, y) + (e - \frac{1}{2})(xy - yx) = 0$. This expands to (yx)e = e(yx). Since yx is in A(e, 1) then yx is in C(e). That xy is in C(e) then follows from xy = yx.

LEMMA 8. The product $A(e_1, 1)^{(2)}$ is contained in $A(e_1, 0) + A(e_1, 2)$.

PROOF. Since $A(e_1, 1) = A_{12} + A_{13}$, the desired containment follows if the component in A_{ij} of $(A_{ij})^2$ is zero for j=2 and 3. In (4) relative to the idempotent e_k where $k \neq j$ and k=2 or 3 let x and y be chosen, one each, from A_{1k} and A_{jk} . Let z be in A_{1j} and let λ be 0. Then the right member of (4) has zero as its component in A_{1j} so $[xy]_0z$ is in $A_{11} + A_{jj}$. But since $A_{1j} = A_{1k}A_{kj} + A_{kj}A_{1k}$ it follows that $(A_{1j})^2 \subseteq A_{11} + A_{jj}$ and the desired result is achieved.

LEMMA 9. The subspace $M = C + A(e_1, 1) \circ C$ is an ideal of A.

PROOF. It is immediate from Lemma 7 that $A \circ C$ is contained in M. Since $C \circ A(e_1, 1) \subseteq A(e_1, 0) + A(e_1, 2)$ by Lemma 8 and since $A(e_1, 0) \circ$ $A(e_1, 2) = 0$ it suffices to show that $A(e_1, \lambda) \circ [C \circ A(e_1, 1)]_{\lambda}$ is contained in M for $\lambda = 0$ and 2 and to show that $A(e_1, 1) \circ [C \circ A(e_1, 1)]_{\lambda}$ is contained in M. The first containment follows readily from the identities (4) and (5) since if z is in $A(e_1, \lambda)$ and if x and y are selected in any order from C and $A(e_1, 1)$ then the right members are in M. The second containment may be obtained by considering the various subspaces A_{ij} and C_{ij} since $A(e_1, 1) =$ $A_{12} + A_{13}$ and $C = C_{12} + C_{13}$. Since $C_{ij} \subseteq C(e_k, 1)$ and $A_{ij}A_{jk} \subseteq A_{ik}$ for any i, j, and k, $A_{ij} \circ C_{jk} \subseteq C_{ik}$ follows from $A_{ij} \subseteq A(e_k, 0)$. Thus $A_{1j} \circ (A_{1j} \circ C_{1k}) +$ $A_{1j} \circ (A_{1k} \circ C_{1j}) \subseteq C_{1k} \subseteq M$ for (j, k) equal to (2, 3) or (3, 2). By selecting z from A_{1j} and x and y one each from A_{1k} and C_{1k} in (4) and (5) relative to e_k , it can be shown that $A_{1j} \circ (A_{1k} \circ C_{1k}) \subseteq C_{1j} \subseteq M$ for (j, k) equal to (3, 2) or (2, 3). Finally, for (j, k) equal to (3, 2) or (2, 3), $A_{1j} \circ (A_{1j} \circ C_{1j}) =$ $(A_{1k} \circ A_{kj}) \circ (A_{1j} \circ C_{1j})$ by Lemma 3. Then relative to e_k in (4) and (5) and using the components of $A_{1j} \circ C_{1j}$ as z we have $(A_{1k} \circ A_{kj}) \circ (A_{1j} \circ C_{1j}) \subseteq$ $A_{1k} \circ [A_{ki} \circ (A_{1i} \circ C_{1i})] + A_{ki} \circ [A_{1k} \circ (A_{1i} \circ C_{1i})].$ Now $A_{ki} \circ (A_{1i} \circ C_{1i})$ is in $M(e_i)$ the proof being analogous to the argument earlier in the proof of this lemma that $A_{1i} \circ (A_{1k} \circ C_{1k})$ is in M. Since $A_{ki} \circ (A_{1i} \circ C_{1i})$ is also contained in $A(e_j, 1)$ it is in C_{kj} . Therefore $A_{1k} \circ [A_{kj} \circ (A_{1j} \circ C_{1j})] \subseteq A_{1k} \circ C_{kj} \subseteq A_{1j} \subseteq M$. A similar argument yields $A_{ki} \circ [A_{1k} \circ (A_{1i} \circ C_{1i})]$ in M. This completes the proof of the lemma.

In a simple, power-associative, flexible algebra with orthogonal idempotents e and f the subspace A(e, 1) is not the zero subspace since otherwise A is the direct product of the ideals A(e, 0) and A(e, 2). For any element x in A(e, 1), ex=xe if and only if 2ex=x. Let y be a nonzero element of $A(e_1, 1)$. Then letting x in (1) be e_1 gives $(ye_1)e_1+e_1(e_1y)=2(e_1y)e_1$. By the flexibility of A, $(e_1y)e_1=e_1(ye_1)$ so $(ye_1)e_1-(e_1y)e_1=e_1(ye_1)-e_1(e_1y)$. Thus

 $(ye_1-e_1y)e_1=e_1(ye_1-e_1y)$ and hence depending on whether ye_1-e_1y is zero or not zero, either y or ye_1-e_1y is a nonzero element of C. Since $M \supseteq C$ and A is simple, M = A. This implies that $A(e_1, 1) = C$.

LEMMA 10. If x and y are in $A(e_1, 1)$ then xy = yx.

PROOF. By the above, x and y are in C. Expanding $2[F(e_1, x, y)]_{\lambda} = 0$ for $\lambda = 0$ or 2 gives $(1 - \lambda)[xy - yx]_{\lambda} = 0$ so $[xy]_{\lambda} = [yx]_{\lambda}$. Thus, since by Lemma 8, xy and yx are in $A(e_1, 0)A + (e_1, 2)$, $xy = [xy]_0 + [xy]_2 = [yx]_0 + [yx]_2 = yx$ proving the lemma.

By Lemmas 6 and 10, xy=yx for each x in A and y in $A(e_1, 1)$. Thus to show that A is commutative it is only necessary to show that $A(e_1, \lambda)$ is a commutative subalgebra for $\lambda=0$ and 2. This is the substance of the final lemma.

LEMMA 11. If x and y are in $A(e_1, \lambda)$ for $\lambda = 0$ or 2 then xy = yx.

PROOF. By Lemma 2, $H(e_1)$ is an ideal of A and by the simplicity of A, $H(e_1)=A$. Thus $A(e_1, \lambda)\subseteq A(e_1, 1)^{(2)}$. Then the desired result follows if x(zw)=(zw)x for z and w in $A(e_1, 1)$ and x in $A(e_1, \lambda)$. But F(z, w, x)=0 and by Lemmas 6 and 10, z(wx)=(zw)z so (zw)x-x(zw)=(zw)x-x(wz)=F(z, w, x)+z(wx)-(xw)z=0. This shows that $A(e_1, \lambda)$ is commutative.

Lemma 11 completes the argument that A is commutative and proves the above theorem.

REFERENCES

- 1. A. A. Albert, *Power-associative rings*, Trans. Amer. Math. Soc. **64** (1948), 552-593. MR **10**, 349.
- 2. F. Kosier, On a class of nonflexible algebras, Trans. Amer. Math. Soc. 102 (1962), 299-318. MR 24 #A3187.
- 3. R. H. Oehmke, On flexible algebras, Ann. of Math. (2) 68 (1958), 221-230. MR 21 #5664.

DEPARTMENT OF MATHEMATICS, CENTRAL MICHIGAN UNIVERSITY, Mt. PLEASANT, MICHIGAN 48858