PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 31, No. 2, February 1972

ON ALGEBRAS SATISFYING THE IDENTITY
(Px)x-+x(xy)=2(x)x
ROBERT A. CHAFFER

ABSTRACT. Simple, strictly power-associative algebras satisfying
the identity (yx)x+x(xy)=2(xy)x over a field of characteristic not
2 or 3 have been classified by F. Kosier as commutative Jordan,
quasi-associative, or of degree less than three. In the present paper
those of degree three or greater are shown to be commutative,
which eliminates the quasi-associative case mentioned above.

According to a result of F. Kosier [2, Theorem 4.7, p. 317], the simple,
strictly power-associative algebras over a field of characteristic not 2 or 3
and satisfying the identity

1) (rx)x + x(xy) = 2(xy)x

may be characterized as being either of degree less than three, non-
commutative Jordan, or quasi-associative. It will be shown in the following
that this list of possibilities can be reduced and the following theorem is

proved.

THEOREM. A simple, strictly power-associative algebra over a field of
characteristic not 2 or 3 and which satisfies (1) is

(a) a commutative Jordan algebra;

(b) an algebra of degree 2; or

(c) an algebra of degree 1.

To prove this theorem we will take advantage of the earlier mentioned
result due to Kosier and assume in what follows that A is a simple, strictly
power-associative algebra of degree exceeding 2 over a field of characteristic
not two or three and satisfying (1). By that result, 4 is then either a Jordan
algebra or a quasi-associative algebra and thus in either case is a non-
commutative Jordan algebra [1, Theorem 2, p. 582]. Since the objective is
to show that 4 is commutative and since 4 is commutative if and only if
every scalar extension is commutative, we may assume that K is an
algebraically closed field.
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Notations used here include (x, y, z) to denote (xy)z—x(yz) and x-y to
denote xy+yx. Noncommutative Jordan algebras satisfy the identities

2 F(x,y,z) =0 where F(x,y,2)=(x,y,2)+ (z,y, X),
3) J(x,y,z,w) =0
where

Jx,y,z,w) = (x,¥,z-w) + (z,y,w-x) + (W,y, x - 2).

The identity (2) is the linearization of the flexible law, (x, y, x) = 0.

Advantage will be taken here of well-known ([1], [3]) facts regarding
idempotents in a noncommutative Jordan algebra. Included in these is the
vector space direct sum decomposition relative to any idempotent e;
A=A(e,0)+A(e, 1)+ A(e,2) where A(e,2)={x in A:ex=1Ax} for
A=0, 1, or 2. Then A(e, 0)A(e, 2)=A(e, 2)A(e, 0)=0, the subspaces
A(e, A) are subalgebras for A=0 or 2, and A(e, })A(e, 1)+ A(e, 1)A(e, A<
A(e, 1) for 2=0 or 2. The last property is referred to as stability. Also for
A=0or 2 and x in A(e, 4), 2ex=2xe=2Ax. Since the degree of A4 exceeds
2 and since K is algebraically closed, there are pairwise orthogonal idem-
potents e;, e;, and e; such that e;+e,+e;=1. Relative to these three
idempotents 4 has the decomposition, A=>A4,;, 1=i, j=<3, where
A;;=A(e;, 2) and for ix#j, A;=A;;=A(e;, 1)NA(e;, 1). For i, j, and k
pairwise distinct, these subspaces have the properties 4;,4,;+A4,;4,;,< A;;,
Ay ji= A A= A A ;;=0, A A S Ay, A(e;, 1)=A4,;+ Ay, and A(e;, 0)=
Aji+ At A

We shall adopt the notation that for e an idempotent, for A=0, 1, and 2,
and for S a subset of 4, [S]; shall denote the set of all components in
A(e, A) of elements of S. Similarly [S];; denotes the set of components in
Aj; for elements in S. Then for subspaces S and T, the commutative prod-
uct SoT is defined as ;4. [ST+TS], and S®=S-S. Under this
agreement, SoT contains ST and T'S so that a subspace S is an ideal of
A if A-SCSS.

If e is any idempotent then the subspace C(e) shall denote the set
{xin A(e, 1):2ex=x}. Then M(e) denotes the subspace C(e)+ C(e)°A4(e, 1).
The subspace C(e,) is singled out for special attention and is denoted simply
by C. Similarly, M denotes M(e;). The proof of the theorem stated above
proceeds by showing that M is an ideal of 4. This fact along with the
simplicity of A4 yields the equality C=A(e, 1). One can move then with
reasonable dispatch to the commutativity of A4. It is necessary to first
deduce some preliminary lemmas.

LemMma 1. If, for any idempotent e, x and y are in A(e, 1) and z is in
A(e, A) for A=0 or 2 then

@ [xylaz = [x(y2) + (1 — A)(ey — $4y)(z - Ox
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and

®) z[yxla = [@y)x + (4 — D(ey — $4y)(z* X)),

Proor. Expanding the identity J(x,y,e,z)—F(z,y, x)=0 yields
(xy)z=x(yz)+(1—2)(e, y, z°x). Equating the components in A(e, A)
and noting that [e(y(z'x))],=[3Ay(z'x)], gives the identity (4). The
identity (5) is obtained similarly by expanding J(x, y, e, z2)—4F(z,y x)=0.

LEMMA 2. If e is any idempotent then the subspace H(e)=A(e, 1)+
A(e, 1) is an ideal of A.

Proor. Stability and the definition of H(e) yield immediately that
AoA(e, 1)< H(e) and that A(e, 1)oA(e, 1)@ < H(e). Let x, y, and z be
asin Lemma 1. Then z[xy], and [xy];z are in H(e) since the right members
of the identities (4) and (5) are in H(e). Thus, for A=0 or 2, A(e, A)°
A(e, 1)< H(e) and H(e) is an ideal.

LEMMA 3. Relative to the idempotents ey, e,, and e; the equality
Ayy=ApAp;+ A Ay holds.

ProoF. By the previous lemma, H(e, + ¢;) is an ideal of A. The
simplicity of A4 yields H(e,+e;)=A. The components, 4,; and [H(e;+e;)];;,
of these spaces are then equal and

[H(e; + €)); = [(Ay + Ap)*)s; = AgAn + A3Aa.
LeMMA 4. The subspace [C(e,)];; is contained in the subspace C(e,).

Proor. If yisin [C(e,;)];; then y + z=x for some z in [C(e;)];, and x
in C(e;). Then y+z=x=2e¢,x=2e,y+2e,z, so since e;y isin 4;;and e,z isin
A, it follows that y=2e;y.

LEMMA 5. Ifi#j then [C(e)];=[C(e)));;-

PROOF. Let x be in [C(e,)];;- Then xe,—e,x=2F(e,, e;, x)=0. This
implies that x is in [C(e;)],;. Since 7 and j are arbitrary this completes the
proof.

From this point on, C;; will denote the subspace [C(e;)];;=[C(e;)];;.

LEMMA 6. If e is an idempotent, y in A(e, A) for A=0 or 2, and x in
C(e) then xy=yx.

ProoF. Expanding 2F(y, e, x)=0 yields [1—A](xy—yx)=0 and since
A#1, xy=yx.

Lemma 7. If y is in A(e, A) for A=0 or 2 then yC(e)+ C(e)y< C(e).
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PrOOF. Let x be in C(e). By Lemma 6 and by identity (2), F(e, x, y)+
(e—3)(xy—yx)=0. This expands to (yx)e=e(yx). Since yx is in A(e, 1)
then yx isin C(e). That xy is in C(e) then follows from xy=yx.

LEMMA 8. The product A(e;, 1)® is contained in A(ey, 0)+A(e;, 2).

PROOF. Since A(e;, 1)=A,5+ 4,5, the desired containment follows if
the component in A4;; of (4,;)? is zero for j=2 and 3. In (4) relative to the
idempotent e, where k#j and k=2 or 3 let x and y be chosen, one each,
from A,, and A,,. Let z be in 4,; and let A be 0. Then the right member of
(4) has zero as its component in A4,; so [xylyz is in 4;;+A;;. But since
A=A Ay + A4y it follows that (A4;)2< A4,,+A4,; and the desired
result is achieved.

LEMMA 9.  The subspace M=C+A(ey, 1)°C is an ideal of A.

ProoF. It is immediate from Lemma 7 that A-C is contained in M.
Since CoA(e,, 1)= A(e;, 0)+A4(ey, 2) by Lemma 8 and since A(e;, 0)o
A(ey, 2)=0 it suffices to show that A(e;, A)o[CoA(e;, 1)]; is contained
in M for A=0 and 2 and to show that A(e;, 1)o[CoA(e,, 1)]; is contained
in M. The first containment follows readily from the identities (4) and (5)
since if z is in A(e,;, 4) and if x and y are selected in any order from C and
A(ey, 1) then the right members are in M. The second containment may be
obtained by considering the various subspaces 4;; and C;; since A(ey, 1)=
A+ A3 and C=Ci,+ Cy;. Since C;;< C(ey, 1) and A4,;4;,< A, for any i,
j, and k, A;;0C;, < C; follows from A;;< A(e;, 0). Thus A;;0(4,;0Cy)+
Al,o(AlkoCl,)C Cyu & M for (j, k) equal to (2, 3) or (3, 2). By selecting z
from A4,; and x and y one each from A4,;, and Cy; in (4) and (5) relative to
e, it can be shown that A;0(A4°Cy)= Cy;& M for (j, k) equal to
(3, 2) or (2, 3). Finally, for (j, k) equal to (3, 2) or (2, 3), A;;0(A;;°Cy;)=
(AyeAr;)o(A1;0Cy;) by Lemma 3. Then relative to e, in (4) and (5) and
using the components of A4,;0C;; as z we have (A0d4;;)o(A1;0C)<
Ay [Aro (A1 Crp) 1+ Arye[Ane(A1,0Cyy)). Now Ayye(Ay0Cyy) is in M(ey)
the proof being analogous to the argument earlier in the proof of this
lemma that Al,o(AlkoCIk) is in M. Since A,;°(4,;°Cy;) is also contained in
A(e;, 1) it is in Cy;. Therefore Alko[Ak,o(Al,oCI,)]CAlkoCk, A,EM. A
similar argument yields A;;o[A4;;0(4,;2Cy;)] in M. This completes the
proof of the lemma.

In a simple, power-associative, flexible algebra with orthogonal idem-
potents e and f'the subspace A(e, 1) is not the zero subspace since otherwise
A is the direct product of the ideals A(e, 0) and A(e, 2). For any element x
in A(e, 1), ex=xe if and only if 2ex=x. Let y be a nonzero element of
A(ey, 1). Then letting x in (1) be e, gives (ye,)e;+e,(e,y)=2(e,y)e;. By the
flexibility of 4, (e;y)e;=e,(ye;) so (ye)e;—(e,y)e;=e,(ye;)—e;(e;y). Thus
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(yve,—e y)e,=e,(ye;—e,;y) and hence depending on whether ye,—e,y is
zero or not zero, either y or ye,—e;y is a nonzero element of C. Since
M2=C and 4 is simple, M=A. This implies that 4(e;, 1)=C.

LeMMA 10. If x and y are in A(ey, 1) then xy=yx.

Proor. By the above, x and y are in C. Expanding 2[F(e,, x, ¥)],=0
for 2=0 or 2 gives (1—24)[xy—yx];=0 so [xy],=[yx];. Thus, since by
Lemma 8, xy and yx are in A(e;, 0)4+(ey, 2), xy=[xy]o+ [xy]o=[yx]o+
[yx);=yx proving the lemma.

By Lemmas 6 and 10, xy=yx for each x in 4 and y in A(e,, 1). Thus to
show that A is commutative it is only necessary to show that A(e,, 1) is a
commutative subalgebra for =0 and 2. This is the substance of the final

lemma.
LemMa 11. If x and y are in A(ey, A) for A=0 or 2 then xy=yx.

Proor. By Lemma 2, H(e,) is an ideal of 4 and by the simplicity of 4,
H(e)=A. Thus A(e;, )<= A(e;, 1)®. Then the desired result follows if
x(zw)=(zw)x for z and w in A(e;, 1) and x in A(e,, A). But F(z, w, x)=0
and by Lemmas 6 and 10, z(wx)=(xw)z so (zw)x—x(zw)=(zw)x—x(wz)=
F(z, w, X)+z(wx)— (xw)z=0. This shows that A(e;, 1) is commutative.

Lemma 11 completes the argument that A4 is commutative and proves

the above theorem.
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