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ON ALGEBRAS SATISFYING THE IDENTITY
{yx)x+x(xy)=2(xy)x

robert a. chaffer

Abstract. Simple, strictly power-associative algebras satisfying

the identity (yx)x+x(xy)=2(xy)x over a field of characteristic not

2 or 3 have been classified by F. Kosier as commutative Jordan,

quasi-associative, or of degree less than three. In the present paper

those of degree three or greater are shown to be commutative,

which eliminates the quasi-associative case mentioned above.

According to a result of F. Kosier [2, Theorem 4.7, p. 317], the simple,

strictly power-associative algebras over a field of characteristic not 2 or 3

and satisfying the identity

(1) (yx)x + x(xy) = 2(xy)x

may be characterized as being either of degree less than three, non-

commutative Jordan, or quasi-associative. It will be shown in the following

that this list of possibilities can be reduced and the following theorem is

proved.

Theorem. A simple, strictly power-associative algebra over a field of

characteristic not 2 or 3 and which satisfies (1) is

(a) a commutative Jordan algebra;

(b) an algebra of degree 2; or

(c) an algebra of degree 1.

To prove this theorem we will take advantage of the earlier mentioned

result due to Kosier and assume in what follows that A is a simple, strictly

power-associative algebra of degree exceeding 2 over a field of characteristic

not two or three and satisfying (1). By that result, A is then either a Jordan

algebra or a quasi-associative algebra and thus in either case is a non-

commutative Jordan algebra [1, Theorem 2, p. 582]. Since the objective is

to show that A is commutative and since A is commutative if and only if

every scalar extension is commutative, we may assume that K is an

algebraically closed field.
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Notations used here include (x,y, z) to denote (xy)z-x(yz) and x-y to

denote xy+yx. Noncommutative Jordan algebras satisfy the identities

(2)        F(x, y, z) = 0   where   F(x, y, z) = (x, y, z) + (z, y, x),

J(x, y, z, w) = (x, y,z-w) + (z, y, w ■ x) + (w, y, x • z).

The identity (2) is the linearization of the flexible law, (x,y, x) = 0.

Advantage will be taken here of well-known ([1], [3]) facts regarding

idempotents in a noncommutative Jordan algebra. Included in these is the

vector space direct sum decomposition relative to any idempotent e;

A = A(e, 0)+A(e, \)+A{e, 2) where A(e,2)={x in A:e-x=Xx} for

1=0, 1, or 2. Then A(e, 0)A(e, 2)=A(e, 2)A(e, 0)=0, the subspaces

A(e, X) are subalgebras for 1=0 or 2, and A(e, X)A(e, \)+A(e, \)A(e, 1)£

A(e, 1) for 1=0 or 2. The last property is referred to as stability. Also for

1=0 or 2 and x in A(e, X), 2ex=2xe=Xx. Since the degree of A exceeds

2 and since K is algebraically closed, there are pairwise orthogonal idem-

potents el3 e2, and e3 such that e1+e2+e3=l. Relative to these three

idempotents A has the decomposition, A = 2AU, ljS/, 7=3, where

Aii=A(ei, 2) and for A^A^Aie^, X)C\A(e}, 1). For i, j, and k

pairwise distinct, these subspaces have the properties A^A^ + A^A^A^,

AuAjj=AjjAkk=AkkAij = 0, AijAfxß Aik, A(et, l) = Aij-\-Aik, and A(ei, 0) =

Ajj-\-Ajk+Akk.

We shall adopt the notation that for e an idempotent, for X=0, 1, and 2,

and for 5" a subset of A, shall denote the set of all components in

A(e, X) of elements of 5". Similarly [5}w denotes the set of components in

Ai} for elements in S. Then for subspaces S and T, the commutative prod-

uct S°T is defined as 2a=o.i.2 [ST+TS]x and Si2) = S°S. Under this

agreement, S<>T contains ST and TIS so that a subspace S is an ideal of

A if AoS^S.

If e is any idempotent then the subspace C(e) shall denote the set

{xinA(e, l):2ex=x}. Then M(e) denotes the subspace C(e) + C(e)°A(e, 1).

The subspace C(ex) is singled out for special attention and is denoted simply

by C. Similarly, M denotes M(e,). The proof of the theorem stated above

proceeds by showing that M is an ideal of A. This fact along with the

simplicity of A yields the equality C=A(e, 1). One can move then with

reasonable dispatch to the commutativity of A. It is necessary to first

deduce some preliminary lemmas.

Lemma 1. If, for any idempotent e, x and y are in A(e, 1) and z is in

A(e, X) for 1=0 or 2 then

(3) J{x,y, z, w) = 0

where

(4) [xy]xz = [x(yz) + (1 - X)(ey - \Xy){z ■ x)]x
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and

(5) z[yx]x = [(zy)x + (X - l)(ey - Py)(z ■ x)]x.

Proof. Expanding the identity J(x, y, e, z) —F(z,y, x) = 0 yields

(xy)z=x(yz) + (l — X)(e,y, z-x). Equating the components in A(e, X)

and noting that [e{y(z-x))]x= [?Xy(z-x)]x gives the identity (4). The

identity (5) is obtained similarly by expanding J(x,y, e, z)—XF(z,y x)=0.

Lemma 2. If e is any idempotent then the subspace H(e)=A(e, 1)4-

A(e, 1)<2) is an ideal of A.

Proof. Stability and the definition of 77(e) yield immediately that

A°A(e, l)cH(e) and that A(e, l)°A(e, l)(2)£/7(e). Let x, y, and z be

as in Lemma 1. Then z[xy]x and [xy]^z are in H(e) since the right members

of the identities (4) and (5) are in 77(e). Thus, for X=0 or 2, A(e, X)°

A(e, 1)<2)£77(e) and 77(e) is an ideal.

Lemma 3. Relative to the idempotents e1; e2, and e3 the equality

■dn=AikAkj+AkjAik holds.

Proof. By the previous lemma, H{ei 4- e3) is an ideal of A. The

simplicity of A yields H(ei+ej)=A. The components, Au and [//(e^e.,)]^-,

of these spaces are then equal and

[H(ei 4- e3)]t-,- = [(Aik + Ajx)2]^ = AikAjk + AjkAik.

Lemma 4.   The subspace [C(e,)]i; is contained in the subspace C(e,).

Proof. If y is in [CXeJ]^ then y 4- z=x for some z in [C(e4)]ifc and x

in C(ef). Theny-f z=x=2eix=2eiy-)-2eiz, so since ety is in ^ and e4z is in

.4^., it follows that y=2ety.

Lemma 5.   If&j then [C(e4)]y= [C(e3)]„-.

Proof. Let x be in [C(e3)]i3. Then x^—eix=2F(ei, e3, x)=0. This

implies that x is in [C(e()]tj. Since «' and j are arbitrary this completes the

proof.

From this point on, Ctj will denote the subspace [C{e^]ij=[C{e))]ij.

Lemma 6. 7/e is an idempotent, y in A(e, X) for X=0 or 2, and x in

C(e) then xy=yx.

Proof. Expanding 2F(y, e, x)=0 yields [1— X](xy— yx)=0 and since

X?^l, xy=yx.

Lemma 7.   If y is in A(e, X) for X=0 or 2 then yC(e)4-C(e)y£ C(e).
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Proof. Let x be in C(e). By Lemma 6 and by identity (2), F(e, x, y) +

(e—i)(xy— yx)=0. This expands to (yx)e=e(yx). Since yx is in A(e, 1)

then yx is in C(e). That xy is in C(e) then follows from xy=yx.

Lemma 8.   7/)e product A(e1, 1)(2) « contained in A(ex, 0)+A(elt 2).

Proof. Since A(eu \)=A12-\-A13, the desired containment follows if

the component in Ai} of {Ai})2 is zero for j=2 and 3. In (4) relative to the

idempotent ek where k^j and k=2 or 3 let x and y be chosen, one each,

from Alk and Let z be in y4l3 and let A be 0. Then the right member of

(4) has zero as its component in A15 so [xyJOz is in A^+A^. But since

Alj=AlkAkj-\-AkjAXk it follows that {A1,)2^A11+Ajj and the desired

result is achieved.

Lemma 9.   77je subspace M—C+A(e1, 1)°C is an ideal of A.

Proof. It is immediate from Lemma 7 that A°C is contained in M.

Since C°A(elt \)^A(e1,0)+A(e1, 2) by Lemma 8 and since A(e1,0)°

A(e1,2)=0 it suffices to show that A(e1, X)o[C°A(e1, is contained

in M for 1 = 0 and 2 and to show that A(e1; l)o[CoA(e1, \)]x is contained

in M. The first containment follows readily from the identities (4) and (5)

since if z is in A(et, A) and if x and y are selected in any order from C and

A(e1, 1) then the right members are in M. The second containment may be

obtained by considering the various subspaces Au and C<3 since A(elt 1) =

A12+A13 and C=C12+C13. Since Q^c^, 1) and A4fAmcAa for any j,

j, and fc,-4«°Cflfc= C«. follows from /40-y4(et, 0). Thus ^ij0(^u°Cli)4-

^u°(^i*°Cw)=Q)t=^ for (/, k) equal to (2, 3) or (3, 2). By selecting z

from Au and x andy one each from Alk and Cls. in (4) and (5) relative to

ek, it can be shown that .4l3-°(.4lfc°Cls)£Cij = Af for (y, /V) equal to

(3, 2) or (2, 3). Finally, for (J, k) equal to (3, 2) or (2, 3), ^lj0(^l3oCl3)=

(-4u°.4w)o(.4ij°C'l3.) by Lemma 3. Then relative to ek in (4) and (5) and

using the components of AXi°CXj as z we have (Alk°Akj)o(Alj'>Clj)^

^"[A^iA^C^+A^A^A^C^)]. Now Akjo{A1}oCu) is in M(e,)

the proof being analogous to the argument earlier in the proof of this

lemma that Als°(Alk°Clk) is in M. Since Akj°(Alj°C1^) is also contained in

A(e„ 1) it is in Ckj. Therefore A^A^'A^oC^^AyoC^A^M. A

similar argument yields Akjo[Alko(AljoClj)] in M. This completes the

proof of the lemma.

In a simple, power-associative, flexible algebra with orthogonal idem-

potents e and/the subspace A(e, 1) is not the zero subspace since otherwise

A is the direct product of the ideals A(e, 0) and A(e, 2). For any element x

in A(e, 1), ex=xe if and only if 2ex=x. Let y be a nonzero element of

A(e1, 1). Then letting x in (1) be e1 gives (ye1)e1 + e1(e1y)=2(e1y)e1. By the

flexibility of A, (eiy)e1=e1(ye1) so (ye1)e1-(e1y)e1=e1(ye1)-e1(e1y). Thus
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(ygj —e1y)e1=e1(ye1—exy) and hence depending on whether yex —exy is

zero or not zero, either y or yex—e^y is a nonzero element of C. Since

¥2 C and A is simple, M=A. This implies that A{ex, 1) = C.

Lemma 10.   If x andy are in A(ex, 1) then xy=yx.

Proof. By the above, x and y are in C. Expanding 2[rv(e1, x, y)]^=0

for 1=0 or 2 gives (1— A)[xy— yx]x=0 so [xy]A= [yx3/l. Thus, since by

Lemma 8, xy andyx are in A(eu 0)A + (e1, 2), xy=[xy]0+ [xy]2= [yx]0+

[yx]2=yx proving the lemma.

By Lemmas 6 and 10, xy=yx for each x in A andy in A(eu 1). Thus to

show that A is commutative it is only necessary to show that A{ex, 1) is a

commutative subalgebra for 1=0 and 2. This is the substance of the final

lemma.

Lemma 11.   If x andy are in A(ex, 1) for 1=0 or 2 then xy=yx.

Proof. By Lemma 2, H{e^) is an ideal of A and by the simplicity of A,

H(e1)=A. Thus A(eu X)^A(eu 1)(2). Then the desired result follows if

x(zw) = (zw)x for z and w in A{ex, 1) and x in A(elt 1). But F(z, w, x) = 0

and by Lemmas 6 and 10, z(wx) = (xw)z so (zw)x—x(zw) = (zw)x—x(wz)=

F(z, w, x)+z(wx)—(xw)z=0. This shows that A{ex, 1) is commutative.

Lemma 11 completes the argument that A is commutative and proves

the above theorem.
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