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FIXED POINT THEOREMS FOR CERTAIN

CLASSES OF MULTIFUNCTIONS

R. E. SMITHSON

Abstract. The following two fixed point theorems for multi-

functions are proved: Theorem. If X is a tree and if F:X->-X is a

lower semicontinuous multifunction such that F(x) is connected for

each xeX, then Fhas a fixed point. Theorem. Let Xbea topologically

chained, acyclic space in which every nest of topological chains is

contained in a topological chain. If F:X-*-X is a point closed multi-

function such that the image of a topological chain is chainable and

such that F~1(x) is either closed or chainable for each xEX, then F

has a fixed point.

1. Introduction. Numerous papers have been published which give

conditions under which certain topological spaces will have the fixed

point property for a class of functions. For example, [1], [2], [6], [8],

and [10] all give fixed point theorems for classes of multivalued functions.

However, in all of these cases the theorems are all for upper semicon-

tinuous or continuous multifunctions. The purpose of this paper is to

prove two fixed point theorems with much different hypotheses. In the

first of these we use lower semicontinuity rather than upper semicontinuity.

In the second we exploit the observation that the preservation of connected-

ness or arcwise connectedness by continuous maps is an essential ingre-

dient in the proofs of many fixed point theorems by assuming that the

function in question preserves arcwise connectedness. In so doing it is

not necessary to assume any of the classical forms of continuity. This

is much the same idea used in [3]. Furthermore, the present Theorem 2

implies several other known theorems which do use continuity. Among

these are Ward's Theorem [10] and a theorem of G. S. Young [11]; these

are given as corollaries.

The term multifunction or multivalued function denotes a corre-

spondence F:X-*Y such that F(x) is a nonempty subset of Y for each

xeX(i.e., Pis a relation onXinto T). IfA<=X, then F(A)=\J {F(x):xeA},

and if Pcy, then F~1(B) = {xeX:F(x)riB^ 0} where 0 denotes the

empty set. A multifunction F^—>-Fis lower semicontinuous (l.s.c.) iff for

each open set U<=-Y, the set F^iU) is an open subset of X. Further, F is

upper semicontinuous (u.s.c.) iff the inverse of each closed set is closed,
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and Fis continuous iff it is both l.s.c. and u.s.c. Finally, the multifunction

F is called point closed (connected, compact, etc.) in case F(x) is closed

(connected, compact, etc.) for all xeX.

A useful characterization of lower semicontinuity is given in the

following lemma whose proof follows directly from the definition and is

omitted.

Lemma L A multifunction F:X^-Y is l.s.c. iff for each open set U<= Y

and each xsX with F(x) n 0 , there exists an open set Fe X such that

xe V and F(z) n     0 for all ze V.

A fixed point of a multifunction F is a point x such that xeF(x).

2. The fixed point theorems. The proofs of the two fixed point theorems

are modifications of order theoretic arguments used in earlier works of

several authors (see, for example, [3] and [10]). For this reason we first

give the necessary preliminary material and the statements of the theorems.

Then we present a lemma that can be used in proving both theorems,

and then we give the proofs of the main theorems.

In [6] Wallace proved that a tree had the fixed point property for upper

semicontinuous multifunctions for which F(x) was compact and connected

for each xeX. Our first theorem asserts that each tree has the fixed point

property for point connected, l.s.c. multifunctions. Before stating this

theorem we review the basic properties of trees with particular emphasis

on their partial order structure.

Let X be a continuum. We say that z separates x and y in X if and only

if X\z=A\JB where A and B are separated and xeA, yeB. Then a con-

tinuum X is a tree if and only if each two distinct points of X are separated

by a third point in X.

We define a relation ^ on X as follows: Let eeX be fixed. Then x^y,

x, yeX, if and only if either (i) x=e, (ii) x=y or (iii) x separates e and y.

It is not difficult to show that ^ is a partial order on X and that e is a

unique minimal element. The principal properties of this partial order

are given in the following lemma which is from [7].

Lemma 2.   The partial order ^ satisfies:

(i) ^ is semicontinuous.

(ii) 5j is order dense.

(iii) If x, y g X, then L(x)C\L(y) is a nonempty chain.

(iv) M(x)\x is open for all xgX.

In Lemma 2, L(x) = {y:y^x} and M(x) = {y:x^y}.

Then ^ is semicontinuous if and only if M(x) and L(x) are closed sets

for all xeX. As usual x<y means x^y and x^y. Then iS is order dense if
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and only if x<_y implies there exists a zeX such that x<z<y. Finally, a

chain is any linearly ordered subset.

It follows from the compactness of X and Lemma 2 that each chain in X

has a supremum in X, and that each closed chain contains its supremum

(see for example [10]).

We also need the following lemma in which we assume that X is a tree

with the partial order ^.

Lemma 3.   If A is connected, if x<£A, and if A r>M(x)?z 0 , then A<= M(x).

Proof. Suppose AC\M(x)^0 and A r\(X\M(x))=£ 0. Then An

{M(x)\x} and An(X\M(x)) are relatively open subsets of A and since

x$A, these separate A contrary to the assumption that A is connected.

Theorem 1. Let X be a tree and let F:X-^-X be a point connected, l.s.c.

multifunction on X into X. Then there exists a point xeX such that xeF(x)

(i.e., F has a fixed point).

Remark. In the theorems using upper semicontinuity or continuity

it was generally necessary to assume that each set F(x) was compact as

well as connected. But in Theorem 1 we did not need to assume that

these sets are compact.

For the next theorem we use the terminology and definitions from [9]

which are reviewed below.

A topological chain is a continuum with exactly two noncutpoints which

are called endpoints. A topological chain with endpoints x, y is written

Lv,_y]. In this context {x}=[x, x] is a topological chain. If a topological

chain is also separable then it is a real arc. A space (or subset of a space)

is chainable if and only if each pair of points in A" is contained in a topolog-

ical chain in X and such a space is acyclic in case for each x, yeX there is

only one topological chain in X with endpoints x, y. If X is an acyclic

chainable space, X \s partially ordered as follows: Let eeXbe fixed. Then

x^y iff [e, x]cz [e,y]. It is easy to verify that ^ is a partial order on X

and e is the unique minimal element. As above we set M(x) = {y:x^y},

and in the following the partial order referred to is this one.

Now if X is a topologically chained space in which each nest of chains

is contained in a chain, Xis acyclic. Furthermore, if S is a nested collection

of subsets of X of the form [e, x], then (J 5<= [e, z] for some zeX and

hence, \J S has a supremum in [e, z]. With these facts at our disposal we

are now ready to state the next theorem.

Theorem 2. Let X be a topologically chained space in which every nest

of topological chains is contained in a topological chain, and let F:X—>X be

a point closed multifunction on X into X such that F( [x, y]) is chainable
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for each x,yeX. If for each xeX, F~*(x) is either chainabie or closed, then

F has a fixed point.

Lemma 4 below asserts that under the conditions of our theorems there

is a maximal element x such that y^x implies that F(y)cz M(y). Then to

conclude the proofs of the theorems we shall show that if x is not a fixed

point, then it can not be maximal with respect to the above stated property.

Lemma 4. Let X, F satisfy either the hypotheses of Theorem 1 or

Theorem 2, and let ^ be the appropriate partial order defined above with

minimal element e. Further, assume that F does not have a fixed point. If

e^y<x implies that F(y)<= M(y), then F(x)<= M(x). Consequently there

is an element x0eX which is maximal with respect to e^y^x0 implies that

F(y)czM{y).

Proof. First suppose that A'is a tree and that Pis l.s.c. If zeF(x)\M(x),

then, since A' is a tree and F is l.s.c, there exist open sets U, V such that

zeU, xeV, UC\V=0, UnM(x')=0 for all x'eV and F(x')nC/#0 for

all x'eV. But there exists a yeV such that e^y<x, and the above implies

that F(y)<t M(y). Hence, F(x)c M(x).

Next suppose that the hypotheses of Theorem 2 holds, and that

F(x)<t M(x). In this case F(x) is closed, and since [e, x] is a continuum,

there exists a ye[e, x] such that F(x)C\M(y)= 0. But F([y,x]) is chainabie,

and if y^z<x, F(z)<^ A/(z)<= M(y). Hence, F([y, x]) meets M(y) and

X\M(y) and thus contains/. But this is impossible unlessy is a fixed point.

Therefore we conclude that F(x)c M(x).

Finally, the collection Sp={\e, x]:ye[e, x] implies F(y)<= M(y)} is

partially ordered by inclusion, and if ^ is a nest in &°, then the first part

of the lemma implies that # has an upper bound in $f. Thus by Zorn's

Lemma, there is a maximal element [e, x0]eSP and x0 is the required

maximal element with the given property.

We are now ready to complete the proofs of Theorems 1 and 2. In these

we shall use the above notation.

Proof of Theorem 1. Suppose that F does not have a fixed point and

suppose that xe[e, x0] implies that F(x)<= A/(x). Now let yeF(x0) and

let x0<z<y. Since F is l.s.c, there exists an open set U containing x0

such that F(x)C\(M(z)\z)^0 for all xell. Further, we may choose U so

that Ur\M(z)=0. Now, since X is a tree there is a zxsU such that

x0<z,and [x0,z,]c: U.Then, if x^x^Zy, F(x)nM{x)j£0 andthusF(x)c

M(x) (since F is point connected). This implies that no such element x0 is

maximal with respect to xe[e, x0] implies F(x)c M(x). Since this contradicts

Lemma 4, we conclude that F has a fixed point.

Proof of Theorem 2. Apply Lemma 4 to obtain an element x0 which

is maximal with respect to F(x)<= M(x) for all e5=x^x0. Then let xx be the
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minimal element of F(x„), and let zxg[x0, x,] be such that F(z,)<t M"(z,).

(Note that x0<z^x,.) Then, since F([x0, z,]) is arcwise connected there

is an xe[x0, zJnFQx,,, z,]) such that x9£x1. Now we have two possibilities;

either F_1(x) is closed or F_1(x) is chainable. First, if F_1(x) is closed,

then F_1(x)n[xq, zx] is compact and thus has an infimum,/,, andyt^x0.

Now let x0<v;2<>'i- If f(z)cM(z) for all ze[x„,j2] we contradict the

maximality of x0. On the other hand we have x,eF([x0, y2]) and for some

element z of [x„, y2], F(z)<t M(z) which implies that xeF([x„, j2]) which

contradicts the definition of yv Thus assume that F_1(x) is chainable,

and hence F-1(x)n [x0, zx]=A is an arc. If inf A^x0, we obtain the same

contradiction as above. So suppose inf A=x0, and let x0<}>i<x. Then if

ze[x0,yx], F(z)f\M(z)^0 (as xeM(z)), which implies that either zeF(z)

or F(z)<=A/(z). The latter case contradicts the maximality of x„. Hence,

we conclude that F has a fixed point.

As corollaries to Theorem 2 we obtain a theorem of Young [11], a

theorem of Ward [10] and a theorem of Smithson [3].

Corollary 1 (Young). Let X be an arcwise connected T2-space in

which each nest of arcs is contained in an arc. If f: X^-X is a continuous

function of X into X, then f has a fixed point.

Proof. Since /is continuous, the image under / of an arc. is arcwise

connected and/_1(x) is closed for each x. Thus Theorem 2 implies that/

has a fixed point.

Corollary 2 (Ward). Let X be a hereditarily unicoherent, chainable

continuum. If F.X—>X is an u.s.c. multifunction such that F(x) is a sub-

continuum for each xeX, then F has a fixed point.

Proof. Since X is hereditarily unicoherent and chainable, each sub-

continuum is chainable, and since F is u.s.c, F_1(x) is closed for each

xeX. Thus Theorem 2 applies.

Corollary 3 (Smithson). Let X be a tree, and let F.X^X be a point

closed multifunction. If for each connected set C^X both F(C) and F_1(C)

are connected, then F has a fixed point.

Proof. Since every connected subset of a tree is chainable, F(x) and

F_1(x) is chainable for each xeX, thus Theorem 2 applies.

Remark. Observe that the space in Theorem 2 need not be compact

nor F2, nor locally connected. While it is true that under certain condi-

tions a multifunction which preserves connected sets and has closed point

inverses is u.s.c, this usually requires the domain to be locally connected.

(See for example [4] and [5].) On the other hand simple examples are

given in [3] which show that the preservation of arcwise connectedness by
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both fand F~x does not imply either u.s.c. or l.s.c. Finally note that point

connected u.s.c. or l.s.c. multifunctions preserve connected sets but not

arcwise connected sets and point compact u.s.c. multifunctions preserve

compact sets but l.s.c, point compact multifunctions do not preserve

compact sets.

Finally in 1962 in his dissertation at the University of Oregon, K. Harris

showed that the continuous image of a topological chain in a r2-space 1S

chainable. Thus it is not necessary to assume that the arcs in Corollary 1

are separable.
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