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RINGS  SATISFYING MONOMIAL IDENTITIES

MOHAN S. PUTCHA AND ADIL YAQUB

Abstract. The following theorem is proved: Suppose R is an

associative ring and suppose that w(xu ■ ■ ■ , x„) is a fixed word

distinct from Xi ■ ■ ■ xn. If, further, x, ■ ■ ■ xn = w(xl, ■ ■ ■ , xn), for

all xu " * *, x» in R, then the commutator ideal of R is nilpotent.

Moreover, it is shown that this theorem need not be true if the word

w is not fixed.

Suppose R is an associative ring and suppose Xy, ■ ■ • ,xn are elements of

R. A word w(Xy, • • • , xj in xl5 • • • , xn is a product in which each factor

is X( for some i= 1, • • • , «. Our present object is to prove

Theorem 1. Suppose R is an associative ring and suppose w(xy, • • • , x„)

is a fixed word distinct from the word Xy • ■ • xn. Suppose

(1) Xj. • • • xn = w(xy, ■■■ , x„),   for all xu • • •, x„ in R.

Then there exists a positive integer m such that RmC(R)Rm = (0), where

C(R) is the commutator ideal of R. In particular, the commutator ideal ofR

is nilpotent.

Moreover, a counterexample is given which shows that Theorem 1 need

not be true if w(xu • ■ • , xj is not a fixed word.

In preparation for the proof of Theorem 1, we first show the following

lemmas.

Lemma 1. Suppose R is an associative semisimple ring, and suppose

w(Xy, • • • , x„) is a fixed word involving each of the elements Xy, • • • ,xn of

R. If, further,

(2) xy-- ■ xn = w(xy, • •■ , xn),   for all xx, • • • , xn in R,

then R is commutative.

Proof.   Suppose, first, that R has an identity 1. We now distinguish two

cases.

Case 1.

(3) Xy • • • xn = w(Xy, - - - , x„) = x„w • • • xaM,
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where a is a permutation of {1, • • • , «} distinct from the identity per-

mutation. Then, for some integers i,j, we have /<;'but a(i)>a(j). Now,

let a, beR, and set in (3), xr¡U) =a, xa{¡) =b, xk=l for all k^a{i), k^a(f),

we get ba=ab, and the lemma follows.

Case 2.

x-i • • • xn = w(xlt • • • , xn),
(4)

some xt appears at least twice in w(xlt • ■ • , xn).

In this case, by setting xx=- • •=xí_1=xí+1 = - • -=xn=l in (4), we get

(5) x, = x\,   for all xt in R       (k > 1).

Hence [2, p. 217], R is commutative, and the lemma follows again.

Returning to the general case, observe that, since R is semisimple, R is

isomorphic to a subdirect sum of primitive rings R¡, ieV, each of which

clearly satisfies (2). Since every subring and every homomorphic image of

R satisfies (2), it follows [2, p. 33] that some complete matrix ring, Am,

over a division ring satisfies (2) also. Since Am has an identity, it follows

(by the first part of this proof) that Am is commutative. Thus m=\, and

Am=A is a field. Hence [2, p. 33] the primitive ring R¿ is isomorphic to the

field A. Thus R is isomorphic to a subdirect sum of fields, and hence R is

commutative. This proves the lemma.

Next, we consider the case in which the word w(x1, ■ ■ ■ , xn) satisfies (4).

In this case, we can even say more. Indeed, we have

Lemma 2. Suppose R is an associative ring and suppose that C(R) and

J denote the commutator ideal and Jacobson ideal of R. Suppose that

w(xu • • • , xn) is a fixed word involving each of the elements x1,---,xn

of R. Suppose, moreover, that for some t, xt appears at least twice in

w(xu ■ ■ ■ ,x„). If, further,

(6) xx • ■ • xn = w(xu ■■• , xn),   for all xlt ■ ■ ■ , xn in R,

then (i) R/J is isomorphic to a subdirect sum of finite fields of orders bounded

by the length ofw ; (ii) C(R) ç= J; (iii) J consists of precisely the set of nilpotent

elements of R.

Proof. Since R/J is a semisimple ring which, clearly, satisfies (6), it

follows, by Lemma 1, that R/J is commutative, and hence R/J is iso-

morphic to a subdirect sum of fields Fit ieT. Now, each F( clearly satisfies

(6), and hence by setting x¿ = l for all i?tt in (6), we obtain

(7) xt = xkt,   for all xt in R       (k > 1).

Therefore F, is a finite field with at most k elements, and, clearly, k is equal

to or less than the length of the word w(xu • • ■ , xn). This proves (i).
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Part (ii) follows at once, since R/I is commutative. Finally, to prove (iii),

suppse aej, and set xt=a, for all /', in (6). We get, an=anal for some

/g£l, and hence a"=0. Conversely, if a is nilpotent, then ä (=a+J) is a

nilpotent element in R/J, and hence by (i), ä=Ö. Thus aej, and the lemma

is proved.

Next, we prove

Lemma 3. Suppose R is an associative ring, and suppose J is thelacobson

radical ofR. Suppose that w(x1; • • • , x„) is a fixed word involving each of the

elements Xy,---,xn of R and in which some xt appears at least twice.

Suppose, moreover, that

(8) Xy---xn = w(Xy, ■■■ , xn),   for all Xy, ■ ■ • , xn in R.

Then, for some I, 1=¿=«, we have R^JR11-'^^).

Proof. By Lemma 2 (iii), J is a nil ring. Now, let aej, and set in (8),

Xy=- ■ -=x„=a, we get an=anal, for some /j>l. Therefore the nil ring J

satisfies fl"=0, and thus [1, p. 28] / is locally nilpotent. Next, let ay, • • • ,

aneJ. Then the ring generated by at, • ■ • , an is nilpotent, say of index k.

Now, by reiterating (8) until the length of the word w(xx, • • • , xn) in the

right-hand side becomes ^.k, it follows that ay ■ ■ ■ an=0, and hence J"=

(0). Next, since x¡ appears at least twice in the word w(xx, • • • , xn), we

can, by reiterating in (8), obtain a word w'(x±, • • • , xn) of length ^«2 and

such that

(9) xy- ■ -xn = w'(xy, • • • , xj,    for all Xy, ■ ■ ■ , xn in R.

Observe that in the word w'(xy, ■ • ■ , x„), some x, appears at least « times.

We now fix i, and substitute xi=a; x^r^jj&i, where each r^eR, we get

rr • • • r{_yari+1 ■ ■ ■ rncln = (0).

Hence, Ri^1IRn~i=(0), and the lemma is proved.

Our final lemma is true for semigroups (and hence, a fortiori, for rings),

and has been proved in [4, Theorem 1].

Lemma 4.   Let S be a semigroup such that, for all Xy, ■ • • , xn in S,

Xy • • • xn = xCT(1) • • • xaM,

where a is a fixed permutation of {I, • • • , «} distinct from the identity per-

mutation. Then there exists an integer m such that, for all u, v in Sm and all

x, v in S, we have uxyv = uyxv.

We are now in a position to prove Theorem 1.
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Proof of Theorem 1. First, suppose the word w(xlt • • • ,xn) does not

involve x{, for some i. In (1), set x¿=0 and, for jj¿i, let x¿ be arbitrary;

we get w(x1, • • • , xn)=0 and hence, by (1), xx- ■ ■ xn=0 for allxx, ■ • • , xn

in R (since w(xu • • •, xn) is fixed). Thus Rn=(0), and Theorem 1 follows

at once. Next, suppose w(xx, ■ • ■ , xn)=xa(1) • ■ ■ xa(n), for some permu-

tation a of {1, • • ■ , «} different from the identity. Then, by Lemma 4,

u(xy — yx)v = 0,   for all u,v e Rm and all x, y e R.

Hence, RmC(R)Rm=(0), and Theorem 1 follows again. The only case left

is when w(x1, • ■ • , xn) involves each x¡ and, moreover, some xt appears at

least twice in w(xl5 • • • , xn). By Lemmas 2 and 3 we have Ri~1C(R)Rn~iÇ

Ri~1JRn~i=(0), for some i, 1_¡_«, and once again the theorem follows.

This completes the proof.

Corollary. Suppose R is an associative semiprime ring satisfying the

hypothesis of Theorem 1. Then R is commutative.

Proof. Since R is a semiprime ring, the prime radical of R is (0) [3,

p. 146], and hence R contains no nonzero nilpotent ideals. Now, by Theorem

1, the commutator ideal, C(R), of R is nilpotent, and hence C(R)=(0).

Therefore R is commutative, and the corollary is proved.

We conclude with the following

Remark. Theorem 1 need not be true if we replace the fixed word

w(xlr ■ • • , xn) by a "variable" word (depending on x1; • • • , xn). For,

suppose R is the complete matrix ring, (GF(2))2, of all 2x2 matrices over

GF(2). It is easily verified that

x1x2 = x\x2       if xl is invertible or idempotent,

(10) = x±x\       if x2 is invertible or idempotent,

— ÍX\X2)2   otherwise.

However, the commutator ideal of (GF(2))2 is not even nil. In verifying

(10), observe that (i) x8=x2 holds in (GF(2))2; (ii) every matrix in (GF(2))2

is invertible, or idempotent, or nilpotent; (iii) the product of any two nil-

potent matrices in (GF(2))2 is idempotent.

In conclusion, we wish to express our indebtedness and gratitude to the

referee for his suggestions which resulted in shorter proofs and stronger

results.
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