RINGS SATISFYING MONOMIAL IDENTITIES

MOHAN S. PUTCHA AND ADIL YAQUB

ABSTRACT. The following theorem is proved: Suppose R is an associative ring and suppose that $w(x_1, \dots, x_n)$ is a fixed word distinct from $x_1 \dots x_n$. If, further, $x_1 \dots x_n = w(x_1, \dots, x_n)$, for all x_1, \dots, x_n in R, then the commutator ideal of R is nilpotent. Moreover, it is shown that this theorem need not be true if the word w is not fixed.

Suppose R is an associative ring and suppose x_1, \dots, x_n are elements of R. A word $w(x_1, \dots, x_n)$ in x_1, \dots, x_n is a product in which each factor is x_i , for some $i=1, \dots, n$. Our present object is to prove

THEOREM 1. Suppose R is an associative ring and suppose $w(x_1, \dots, x_n)$ is a fixed word distinct from the word $x_1 \dots x_n$. Suppose

(1)
$$x_1 \cdots x_n = w(x_1, \cdots, x_n)$$
, for all x_1, \cdots, x_n in R .

Then there exists a positive integer m such that $R^mC(R)R^m=(0)$, where C(R) is the commutator ideal of R. In particular, the commutator ideal of R is nilpotent.

Moreover, a counterexample is given which shows that Theorem 1 need not be true if $w(x_1, \dots, x_n)$ is not a fixed word.

In preparation for the proof of Theorem 1, we first show the following lemmas.

LEMMA 1. Suppose R is an associative semisimple ring, and suppose $w(x_1, \dots, x_n)$ is a fixed word involving each of the elements x_1, \dots, x_n of R. If, further,

(2)
$$x_1 \cdots x_n = w(x_1, \cdots, x_n), \text{ for all } x_1, \cdots, x_n \text{ in } R,$$

then R is commutative.

PROOF. Suppose, first, that R has an identity 1. We now distinguish two cases.

Case 1.

$$(3) x_1 \cdots x_n = w(x_1, \cdots, x_n) = x_{\sigma(1)} \cdots x_{\sigma(n)},$$

Received by the editors February 23, 1971 and, in revised form, May 18, 1971. AMS 1970 subject classifications. Primary 16A38, 16A48; Secondary 16A70. where σ is a permutation of $\{1, \dots, n\}$ distinct from the identity permutation. Then, for some integers i, j, we have i < j but $\sigma(i) > \sigma(j)$. Now, let $a, b \in R$, and set in (3), $x_{\sigma(i)} = a, x_{\sigma(j)} = b, x_k = 1$ for all $k \neq \sigma(i), k \neq \sigma(j)$, we get ba = ab, and the lemma follows.

Case 2.

(4)
$$x_1 \cdots x_n = w(x_1, \cdots, x_n),$$
 some x_t appears at least twice in $w(x_1, \cdots, x_n)$.

In this case, by setting $x_1 = \cdots = x_{t-1} = x_{t+1} = \cdots = x_n = 1$ in (4), we get

(5)
$$x_t = x_t^k, \text{ for all } x_t \text{ in } R \qquad (k > 1).$$

Hence [2, p. 217], R is commutative, and the lemma follows again.

Returning to the general case, observe that, since R is semisimple, R is isomorphic to a subdirect sum of primitive rings R_i , $i \in \Gamma$, each of which clearly satisfies (2). Since every subring and every homomorphic image of R satisfies (2), it follows [2, p. 33] that some complete matrix ring, Δ_m , over a division ring satisfies (2) also. Since Δ_m has an identity, it follows (by the first part of this proof) that Δ_m is commutative. Thus m=1, and $\Delta_m=\Delta$ is a field. Hence [2, p. 33] the primitive ring R_i is isomorphic to the field Δ . Thus R is isomorphic to a subdirect sum of fields, and hence R is commutative. This proves the lemma.

Next, we consider the case in which the word $w(x_1, \dots, x_n)$ satisfies (4). In this case, we can even say more. Indeed, we have

LEMMA 2. Suppose R is an associative ring and suppose that C(R) and J denote the commutator ideal and Jacobson ideal of R. Suppose that $w(x_1, \dots, x_n)$ is a fixed word involving each of the elements x_1, \dots, x_n of R. Suppose, moreover, that for some t, x_t appears at least twice in $w(x_1, \dots, x_n)$. If, further,

(6)
$$x_1 \cdots x_n = w(x_1, \cdots, x_n), \text{ for all } x_1, \cdots, x_n \text{ in } R,$$

then (i) R|J is isomorphic to a subdirect sum of finite fields of orders bounded by the length of w; (ii) $C(R)\subseteq J$; (iii) J consists of precisely the set of nilpotent elements of R.

PROOF. Since R/J is a semisimple ring which, clearly, satisfies (6), it follows, by Lemma 1, that R/J is commutative, and hence R/J is isomorphic to a subdirect sum of fields F_i , $i \in \Gamma$. Now, each F_i clearly satisfies (6), and hence by setting $x_i = 1$ for all $i \neq t$ in (6), we obtain

(7)
$$x_t = x_t^k, \text{ for all } x_t \text{ in } R \qquad (k > 1).$$

Therefore F_i is a finite field with at most k elements, and, clearly, k is equal to or less than the length of the word $w(x_1, \dots, x_n)$. This proves (i).

Part (ii) follows at once, since R/J is commutative. Finally, to prove (iii), suppse $a \in J$, and set $x_i = a$, for all i, in (6). We get, $a^n = a^n a^l$ for some $l \ge 1$, and hence $a^n = 0$. Conversely, if a is nilpotent, then \bar{a} (= a + J) is a nilpotent element in R/J, and hence by (i), $\bar{a} = \bar{0}$. Thus $a \in J$, and the lemma is proved.

Next, we prove

LEMMA 3. Suppose R is an associative ring, and suppose J is the Jacobson radical of R. Suppose that $w(x_1, \dots, x_n)$ is a fixed word involving each of the elements x_1, \dots, x_n of R and in which some x_t appears at least twice. Suppose, moreover, that

(8)
$$x_1 \cdots x_n = w(x_1, \cdots, x_n)$$
, for all x_1, \cdots, x_n in R .

Then, for some i, $1 \le i \le n$, we have $R^{i-1}JR^{n-i} = (0)$.

PROOF. By Lemma 2 (iii), J is a nil ring. Now, let $a \in J$, and set in (8), $x_1 = \cdots = x_n = a$, we get $a^n = a^n a^l$, for some $l \ge 1$. Therefore the nil ring J satisfies $a^n = 0$, and thus [1, p. 28] J is locally nilpotent. Next, let $a_1, \cdots, a_n \in J$. Then the ring generated by a_1, \cdots, a_n is nilpotent, say of index k. Now, by reiterating (8) until the length of the word $w(x_1, \cdots, x_n)$ in the right-hand side becomes $\ge k$, it follows that $a_1 \cdots a_n = 0$, and hence $J^n = (0)$. Next, since x_i appears at least twice in the word $w(x_1, \cdots, x_n)$, we can, by reiterating in (8), obtain a word $w'(x_1, \cdots, x_n)$ of length $\ge n^2$ and such that

(9)
$$x_1 \cdots x_n = w'(x_1, \cdots, x_n)$$
, for all x_1, \cdots, x_n in R .

Observe that in the word $w'(x_1, \dots, x_n)$, some x_i appears at least n times. We now fix i, and substitute $x_i = a$; $x_j = r_j$, $j \neq i$, where each $r_j \in R$, we get

$$r_1 \cdot \cdot \cdot r_{i-1} a r_{i+1} \cdot \cdot \cdot r_n \in J^n = (0).$$

Hence, $R^{i-1}JR^{n-i}=(0)$, and the lemma is proved.

Our final lemma is true for semigroups (and hence, a fortiori, for rings), and has been proved in [4, Theorem 1].

LEMMA 4. Let S be a semigroup such that, for all x_1, \dots, x_n in S,

$$x_1 \cdots x_n = x_{\sigma(1)} \cdots x_{\sigma(n)},$$

where σ is a fixed permutation of $\{1, \dots, n\}$ distinct from the identity permutation. Then there exists an integer m such that, for all u, v in S^m and all x, y in S, we have uxyv = uyxv.

We are now in a position to prove Theorem 1.

PROOF OF THEOREM 1. First, suppose the word $w(x_1, \dots, x_n)$ does not involve x_i , for some i. In (1), set $x_i = 0$ and, for $j \neq i$, let x_j be arbitrary; we get $w(x_1, \dots, x_n) \equiv 0$ and hence, by (1), $x_1 \dots x_n = 0$ for all x_1, \dots, x_n in R (since $w(x_1, \dots, x_n)$ is fixed). Thus $R^n = (0)$, and Theorem 1 follows at once. Next, suppose $w(x_1, \dots, x_n) = x_{\sigma(1)} \dots x_{\sigma(n)}$, for some permutation σ of $\{1, \dots, n\}$ different from the identity. Then, by Lemma 4,

$$u(xy - yx)v = 0$$
, for all $u, v \in \mathbb{R}^m$ and all $x, y \in \mathbb{R}$.

Hence, $R^mC(R)R^m=(0)$, and Theorem 1 follows again. The only case left is when $w(x_1, \dots, x_n)$ involves each x_i and, moreover, some x_t appears at least twice in $w(x_1, \dots, x_n)$. By Lemmas 2 and 3 we have $R^{i-1}C(R)R^{n-i} \subseteq R^{i-1}JR^{n-i}=(0)$, for some $i, 1 \le i \le n$, and once again the theorem follows. This completes the proof.

COROLLARY. Suppose R is an associative semiprime ring satisfying the hypothesis of Theorem 1. Then R is commutative.

PROOF. Since R is a semiprime ring, the prime radical of R is (0) [3, p. 146], and hence R contains no nonzero nilpotent ideals. Now, by Theorem 1, the commutator ideal, C(R), of R is nilpotent, and hence C(R) = (0). Therefore R is commutative, and the corollary is proved.

We conclude with the following

REMARK. Theorem 1 need not be true if we replace the fixed word $w(x_1, \dots, x_n)$ by a "variable" word (depending on x_1, \dots, x_n). For, suppose R is the complete matrix ring, $(GF(2))_2$, of all 2×2 matrices over GF(2). It is easily verified that

(10)
$$x_1x_2 = x_1^7x_2 \quad \text{if } x_1 \text{ is invertible or idempotent,} \\ = x_1x_2^7 \quad \text{if } x_2 \text{ is invertible or idempotent,} \\ = (x_1x_2)^2 \quad \text{otherwise.}$$

However, the commutator ideal of $(GF(2))_2$ is not even nil. In verifying (10), observe that (i) $x^8 = x^2$ holds in $(GF(2))_2$; (ii) every matrix in $(GF(2))_2$ is invertible, or idempotent, or nilpotent; (iii) the product of any two nilpotent matrices in $(GF(2))_2$ is idempotent.

In conclusion, we wish to express our indebtedness and gratitude to the referee for his suggestions which resulted in shorter proofs and stronger results.

REFERENCES

- 1. I. N. Herstein, *Theory of rings*, Math. Lecture Notes, University of Chicago, Chicago, Ill., 1961.
- 2. N. Jacobson, Structure of rings, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R.I., 1964. MR 36 #5158.

- 3. N. H. McCoy, *The theory of rings*, Macmillan, New York; Collier-Macmillan, London, 1964. MR 32 #5680.
- **4.** M. S. Putcha and A. Yaqub, Semigroups satisfying permutation identities, Semigroup Forum 13 (1971), 68-73.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA BARBARA, CALIFORNIA 93106

Current address (Putcha): Department of Mathematics, University of California, Berkeley, California 94720