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Abstract. Suppose R is an associative ring with center Z, and

suppose J is the Jacobson radial of R. Suppose that, for all x, y in

R, there exist zx,v€Z and an integer n(x, y)>\ such that

(A) xy - yx = (xy - yx)M*-y)zx,v.

Then RjJ is a subdirect sum of division rings satisfying:

(xy—yx)"'*-"*-1 is in the center. Additional results on the additive

and multiplicative commutators which are in the center of a

division ring satisfying (A) are also obtained. Next, suppose D

is a division ring of characteristic not 2 and with the property that,

for some x, y in D, there exists a positive integer n such that

{xy— yx)n is in the center, and suppose that the smallest such n is

even, then D contains a subdivision ring isomorphic to the

"generalized" quaternions (and conversely). Finally, it is proved

that an arbitrary ring R with the property that for all x, y in R,

there exists zx,v in Z such that xy— yx=(xy— yxYzx,v is necessarily

commutative, and that the exponent 2 cannot, in general, be

replaced by 3.

A well-known theorem of Herstein [1] asserts that if R is an associative

ring with the property that for all x,y in R, there exists an integer«(x,y)> 1

such that (xy—yx)n{x,v)=xy—yx, then R is commutative. Our present

object is to investigate the structure of an associative ring R with the

property that, for all x, y in R, there exists an element zxv and an integer

«(x, y)> 1 such that zx_„ is in the center Z of R and

xy — yx = (xy - yx)n(x-v)zx¡y.

Indeed, we show that for such a ring R, RjJ is isomorphic to a subdirect

sum of division rings satisfying: (xy—yx)"**-"1"1 is in the center, where J

denotes the Jacobson radical of R. This, in turn, raises the question:

what can be said about a division ring D in which some power of every

commutator xy—yx is in the center Z? In this connection, we prove that

such a division ring D has the property that every multiplicative com-

mutator xyx~1y~1 which is in the center of D is necessarily an mth root
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of unity (for some m). We also show that if the division ring D satisfies:

(xy—yx)n{x-v) is in the center Z of D, and if, in addition, n(x,y) is prime

to the characteristic of D, then every additive commutator xy—yx in Z

is necessarily zero. We then consider the case in which the division ring D

has the property that, for some x, y in D, there exists a positive integer «

such that (xy— yx)n is in the center, and in which the smallest such « is

even. For such a division ring D, we show that D contains a subdivision

ring isomorphic to a division ring of "generalized" quaternions. Finally,

we prove that an arbitrary ring R with the property that, for all x, y in R,

there exists zXtV in Z such that xy—yx=(xy—yx)2zxv is necessarily com-

mutative, and that this theorem is, in general, not true if the exponent 2

is replaced by an arbitrary integer.

In preparation for the proof of the main theorems, we first establish the

following lemmas.

Lemma 1. Suppose R is an associative ring with center Z, and suppose J

and C(R) denote the Jacobson radical and commutator ideal of R, respec-

tively. Suppose that, for all x, y in R, there exist an element z=zxy

(depending on x andy), zXtVeZ, and an integer n=n(x, y)> 1, such that

(1) xy - yx = (xy - yx)nzx¡v.

Then (i)/£Z; (ii) JC(R) = C(R)J=(0); (iii) all the idempotents of R are in

the center of R.

Proof. Suppose xeJ, veR. By (1), (xy—yx)nr~1zXiV is an idempotent

element (since zx¡yeZ) in J, and hence (xy—yx)n~1zxy—0, since / contains

no nonzero idempotents. Therefore, by (1), xy—yx—Q, and (i) is proved.

To prove (ii), suppose that aeJ and x, yeR. Then, using the fact that

JsZ, we get

a(xy — yx) = axy — (ay)x = axy — x(ay)

= axy — x(ya) = a(xy) — (xy)a—0.

Hence aC(R)=C(R)a=(0) for all aeJ, and (ii) follows at once.

To prove (iii), suppose e2=eeR, and suppose aeR. Then, (ea—eae)2=0.

Moreover, by (1),

e(ea — eae) — (ea — eae)e = {e(ea — eae) — (ea — eae)e}nz — 0,

and hence ea=eae. A similar argument shows that ae—eae. Thus ea=ae

for all a in R, and the lemma is proved.

Lemma 2. Suppose R is an associative ring which satisfies the hypotheses

of Lemma 1. Suppose, further, that the intersection of any two nonzero

ideals in R is nonzero. Then (i) the only idempotents in R are 0 and 1 ; (ii) if

xy—yx^O, then (xy— j»jc)"-1gZ and is invertible.
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Proof.   Suppose eeR, e2=e, and define A and B by

A = {ex — x | x e R],       B = {ex | x 6 R}.

Since, by Lemma 1, t? is in the center of R, it is easily seen that both A

and B are ideals in R, and, moreover, A nß=(0). Hence, by hypothesis,

^ = (0)or.B=(0). Now, if,4 = (0), thenxe=ex=xfora//xini?, and hence

e=\. On the other hand, if B=(0), then e=ee=0. This proves (i).

Next, we proceed to prove (ii). Thus suppose x, yeR, and xy—yx^O.

Since zXiV is in the center, we conclude from (1) that (xy—yx)n~1zxy is

idempotent and hence, for all x, y in R,

(2) (xy - yx)-1*.., = 0   or    (xy - yx)T%„ = 1.

Now, if (xy-yx)n-%y=0, then by (1), xy-yx=(xy-yx)%„=0, a

contradiction. Hence (xy— yx)"-^,„^0, and therefore by (2), we have

(xy—yx)n-1zXiV=l. Since zx,yeZ, we get

(xy - yx)"-^ = zx¡y(xy - yx)""1 = 1,

and hence (xy—yx)n~1=z~\eZ (since zxyeZ). Thus (ii) follows, and the

lemma is proved.

As an immediate consequence of Lemma 2, we have the following

Corollary 1. Suppose R is a prime ring or a subdirectly irreducible

ring which satisfies the hypotheses of Lemma 1. Then (i) the only idempotents

in R are 0 and 1 ; (ii) xy — yx^O implies that (xy—yxy^eZ and is invertible.

Lemma 3. Suppose R is an associative ring which satisfies the hypotheses

of Lemma 1. If, further, R is primitive, then R is a division ring.

Proof. By the Jacobson Density Theorem, if R is not a division ring,

then for any «, there is a subring of R with homomorphic image the ring

Dn of «x« matrices over a division ring D. Moreover, (1) is preserved in

Dn, and hence by Corollary 1, the prime ring Dn cannot have any non-

trivial idempotents, a contradiction. This contradiction proves the lemma.

As an immediate consequence of Lemma 3, we have

Theorem 1. In the notation, and under all the hypotheses, of Lemma 1,

we have that RjJ is isomorphic to a subdirect sum of division rings satisfying

(xy—yx)n_1 is in the center.

Proof. Since RjJ is semisimple, it is isomorphic to a subdirect sum

of primitive rings [2, p. 14] each of which clearly satisfies the hypotheses

of the theorem. The theorem now follows at once from Lemma 3.

In view of Theorem 1, it is quite natural to ask what can be said about

a division ring in which some power of every commutator is in the center.

In the next theorems we give some results in this direction.
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Theorem 2. Let D be a division ring with the property that, for all

x, v in D, there exists a positive integer n(x, y) such that (xy— yx)"ix-v) is in

the center Z of D. Let c be any multiplicative commutator which is in the

center Z. Then, for some positive integer m, cm= 1.

Proof. Let c=xyx~1y~1, where ceZ. Then xy=cyx. Now, by hy-

pothesis, the commutator x(x~1y) — (x~1y)x=y—x~~1yx satisfies

(y — x~1yx)m e Z,   for some positive integer m = n(x, x_1y).

Hence, (y—x~1(c~1x.y))meZ, and thus (y— yc~1)mEZ (since c~^eZ). This

reduces to ym(\— c~x)mEZ. Now, if c~x=\, then we are clearly done.

Thus suppose c~x&\. Since (1—c~x)eZ and ym(l—c~1)meZ, we get

ymeZ. Combining this with xy=cyx, ceZ, we obtain xym=cmymx=cmxym,

and hence cm=l. This proves the theorem.

Theorem 3. Let D be a division ring of characteristic q and with the

property that, for all x,y in D, there exists a positive integer n(x,y) such

that (xy—yx)n{x,y) is in the center Z of D. If, further, n(x,y) is prime to q,

then every additive commutator in Z is zero.

Proof. Let x, yeD and let [x,y]=xy— yx. Suppose [x,y]eZ and

[x, yl^O. We shall show that this leads to a contradiction. First, observe

that x[x, y] = [xy, —x] and hence x^y] is a commutator. Therefore, by

hypothesis, there exists a positive integer n=n(xy, —x) prime to the charac-

teristic, such that (x[x,y])"eZ. Since [x,y]eZ, we obtain xn[x,y]neZ.

Again, since [x,y]eZ and [x,y]^0, we get [x,y]~neZ, and hence

(xn[x,y]n)[x,y]~neZ, that is x"eZ. Now, since [x,y] commutes with

x, an easy induction yields [2, p. 221]

(3) 0=[xn,y]=nxn^[x,y],

and hence «T=0, since [x,y]^0. This contradicts the hypothesis that

« is prime to the characteristic of D, and the theorem is proved.

Observe that if the division ring D has characteristic zero, then the

hypothesis "«(x,j») is prime to q" is not needed in Theorem 3. In par-

ticular, we have

Corollary 2. The ring of quaternions has no nonzero additive com-

mutators in the center.

Proof. This follows at once from Theorem 3, upon observing that

the quaternions satisfy: (xy— yx)2eZ.

By a generalized quaternion algebra over a field Z of characteristic not 2,

we mean an algebra over Z, generated by two elements a, ß not in Z,

subject to the relations

(4) xß=~ßx,       <x.2eZ,       ß2eZ.
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(See [4, p. 142].) As is well known [4, §57.2], a quaternion algebra over

Z is central simple over Z.

Our final result on division rings is the following

Theorem 4. Let D be a division ring of characteristic not 2 and with

center Z. Suppose that, for some x, y in D, there exists a positive integer «

such that (xy—yx)n is in Z. If, further, the smallest such n is even, then D

contains a subdivision ring Dx which is isomorphic to a generalized quaternion

division algebra over some extension field ofZ.

Proof. Let x, yeD and let « be the least positive integer such that

(xy—yx)n is in the center Z of D. Let n=2km, £2:1, m odd. By

the minimality of «, there exists a commutator b in D such that bneZ,

bn/2$Z. Let tx=bn/2. Since a<£Z, ay0;¿y0a for some element y0 in D. More-

over, since a2eZ, we have

(5) a(ay0 - y0a) = -(ay0 - y0a)a.

Let /? = (ay0— y0a)m. Since m is odd, (5) readily implies that <x.ß=—ßa..

In addition, since aß=—ßoL, we have c/ß2=ß2a. Now, let Dy=Z(a, ß),

and let Zx be the center of the subdivision ring Dy. Then, as we have just

shown,

a/3 = -/Sa,       a2 e Zx (since a2 e Z),   and   ß2 e Zx (since ß2v. = a/32).

Thus (see (4)), Dy is isomorphic to a generalized quaternion algebra over

Zy, and the theorem is proved.

Our next result is concerned with the special case which arises upon

taking «=2 in (1). In this connection, we have the following

Theorem 5. Suppose R is an associative ring with center Z, and suppose

that for all x, y in R, there exists an element zxy (depending on x and y),

zxyeZ, such that

(6) xy -yx = (xy - yxfzM.

Then R is commutative (and conversely).

Proof. Let J be the Jacobson radical of R. Now, by Theorem 1 (with

« = 2), R/J is isomorphic to a subdirect sum of division rings D{, ieT,

where each D( satisfies: xy — yx is in the center. Hence, by Theorem 3

(with «(x,y)=l), we get xy—yx=0 for all x, y&Dt. Therefore, R¡J is

isomorphic to a subdirect sum of fields, and is thus commutative. Hence

xy—yxeJ, for all x, y in R. Now, since zXiteZ, we get, using (6),

(xy—yx)zXtV is an idempotent element in /, and hence (xy— yx)zxy=0.

Hence, by (6), xy—yx=0 for all x, y in R, and the theorem is proved.
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It is noteworthy to observe that any generalized quaternion division

algebra satisfies "(xy—yx)2eZ" and hence xy— yx=(xy— yxfzxy, for

some zxyeZ. However, such a ring is not commutative. Thus Theorem 5

need not be true when "(xy —yx)2" is replaced by "(xy—yx)3". In addition,

this shows that the converse of Theorem 4 is also true.

In conclusion, we wish to express our indebtedness and gratitude to

the referee for his valuable suggestions.
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