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STABILITY  OF  A  SCALAR  DIFFERENTIAL EQUATION

R.   GRIMMER

Abstract. Sufficient conditions are given for the stability and

asymptotic stability of the zero solution of a scalar differential

equation frequently encountered in the comparison method.

1. Consider the scalar differential equation

(1) r' = w(t, r)       (' = d\dt)

where w(t, r) is defined and continuous for i^O and 0^r^r0, for some

positive constant r0. Under the assumption that w(t, 0)=0 for all r,

sufficient conditions are given for the stability, uniform stability, equi-

asymptotic stability and uniform asymptotic stability of the zero solution

of (1). (For definitions see [3].)

These properties of the scalar equation have been examined previously

in the case when (1) can be written in the form

(2) r' = X(t)<f>(r)

with </>(/-)>0 for r>0, <f>(0) = 0, by Brauer [1] and in [3] and are of

importance in differential inequalities involving Liapunov functions. For

an excellent exposition of this method, see [3].

Noting that uniqueness to the right of the zero solution is necessary

for stability, we give sufficient conditions for the nonuniqueness of the

zero solution of (1). From this result it will be seen that in certain cases

the conditions given in [1] and [3] for the stability of the zero solution

of (2) are incorrect and so direct proofs will be given for the theorems

dealing with the stability of the zero solution of (1).

2. We assume that w(t, r) can be written in the form

(3) w(t, r) = wx(t, r) + w2(t, r)

where w\(t, r) is defined and continuous for t^O, 0^r^r0, i=l, 2. Also

assume the existence of a continuous function L(r) defined for 0<r^ro

with L(r)yO and consider the following set of assumptions:

(I) wx(t, r)L(r) is nondecreasing in r for fixed t.

(II) w2(t, r)L(r) is nonincreasing in r for fixed t.
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We note that if wt(t, r)^0, /=1, 2, that this decomposition of w(t, r)

has been used previously by Hallamand Heidel [2], where they considered

the boundedness and continuability of the solutions of (1). Also, we note

that (2) can be decomposed as above with L(r)=(l¡(j>(r)), w\(t, r)=0 and

w2(t, r)=X(t)<f>(r).

In addition, we assume

(III) there exists a continuous function q(t) defined for r^O with

w2(t, r)L(r)^q(t) for i^O, 0<r^r0.

Further, we shall usually assume

(IV) }r0«L(r)dr= co.

We remark that (I), (III), and (IV) imply that the zero solution of (1) is

unique. We see this as follows. From (1) and (III),

w(t, r) <, (Wl(t, r0)L(r0) + q(t))(\¡L(r))

which we write

w(t, r) ^ UWAr),

and from (IV), we see that Osgood's uniqueness criterion is fulfilled for

the uniqueness of the zero solution.

Theorem 1. Let (II) hold and assume that wx(t, r)^.0 and w2(t, r)>0

for 0^i0<r^f,, 0<r^ro. Then (IV) is a necessary condition for the zero

solution of (I) to be unique to the right at t=t0.

Proof. Suppose (IV) is not valid. We will construct a solution, r(t), of

(1) with r(t0)=0 and /-(r)>0 for / immediately to the right of r0.

As w(t, r) is continuous, there exist e>0 and r2, r,^í2>í0, so that if

OrSriííe then r(t; ru t0) exists on [/„, t2] where r(t; rlt t0) is any solution

of (1) with r(t0; r1, t0)=r1. Further, there exists r2, 0<r2-^r0, such that

r(t; rlt t0)^r2 for t^t^t2, O^/^e. For each positive integer«, choose a

solution rn(t)=r(t; ejn, t0) on [i0, t2]. Choose r3>0 with the property that

p3 ÇH
L(r) dr <!     w2(s, r2)L(r2) ds.

Jo Jt„

For each n we have

Crtti) f-Hh) Tía

L(r) dr ^        L(r) dr ^     w2(s, r)L(r) ds
Jo Jeln Jto

^ ihw2(s, r2)L(r2) ds ^ [\(r) dr.
Jt0 Jo

Hence, rn(t2)¿ir3>0 for every n. Now {rn(t)} is a uniformly bounded

equicontinuous sequence of functions and by Ascoli's Theorem there is a

subsequence which converges uniformly to a solution r(t) of (1) on [r,, t2].
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As rn(tQ)=ejn, we see that r(t0)=0 and as rn(t2)^.r3>0, we see that

r(t2)>0. For i3 with i0<r3</2, we see that the above argument shows that

we must have r(i3)>0. Hence the zero solution of (1) is not unique to the

right and the proof is complete.

Remark. From Theorem 1 we see that if, in (2), A(?0)>0 and

J5° (l/(f>(r)) dr< oo then the zero solution of (2) is not unique to the right

and the zero solution cannot be stable at <■„, and we see that the results for

the stability of the zero solution of (2) given in [1] and [3, p. 139] are

incorrect as J"S° (\¡<p(r)) dr<co was allowed with A(r)>0.

As a further application of Theorem 1, consider the equation

(4) r' = a(t)r + b(t)r°

where a(t) and b(t) are continuous and 0<o-<l. Suppose Z»(f)>0 for

'o<i=fi and let L(r) be given by L(r)=\¡r°. With wx(t, r)=a+(t)r,

w2(t,r)= —a_(t)r+b(t)ra,where a+(t)=max{a(t),0},a_(t)=max{-a(t),0}

and r0>0 chosen sufficiently small, Theorem 1 implies that the zero

solution of (4) is not unique to the right at t0 and, hence, not stable at t0.

We see then that equations of the form of (4) can be used in conjunction

with Liapunov functions to obtain standard types of stability only if

¿>(0=u (see, for example, [3, Theorem 3.7.8]).

We now give some simple conditions which insure the various standard

types of stability.

Theorem 2. Let (I), (III), and (IV) hold. If for each t0^0 there is a

constant M(t0) so that

(wi(s, r0
•Ito

(5) (wx(s, r0)L(r0) + q(s)) ds ^ M(t0)
•Ito

for all t^.t0, then r=0 is stable. If M(t0) can be chosen independent of t0,

then /-=0 is uniformly stable.

Proof.    Let £>0, £5=r0> and ?o=0 be given. From (1), (I), and (III),

we see that if r(/) is a solution of (1),

r'(t)L(r(t)) ^ wx(t, r0)L(r0) + q(t)

as long as r(i)='o ar,d an integration yields

rrit) n
L(r) dr ^    (wx(s, r0)L(r0) + q(s)) ds ^ M(t0).

Jr(to) Jt

From (IV), it follows that ó = o(t0, e)>0 can be chosen so that

j:
L(r) dr > M(t0).



1972] stability of a scalar differential equation 455

Now if r(io)<<5 we see that we must have r(t)<e for all t^t0. Also, it is

obvious that if M(t0)=M, then ô=ô(s) and the stability is uniform.

Theorem 3.   Let (I), (III), and (IV) hold. If

(6) (wx(s, r0)L(r0) + q(s)) ds = - co

then the zero solution of (1) is equi-asymptotically stable. If, further, (5)

holds with M(t0) independent of t0 and, given M1<0, there exists T=

T(Mx)>0 so that
"t0+T

(wi(s, r0)L(r0) + q(s)) ds < M,f
for every t0±iO, then r=0 is uniformly asymptotically stable.

Proof. Noting that (6) implies (5) we need only show that if r(t) is

a solution of (1) with r(í0)<á(/0) e), then r(r)-»-0 as r->oo and the first

statement is proven as asymptotic stability implies equi-asymptotic

stability in the scalar case. That r(r)->-0 follows immediately from (6) as

rrU) rt

L(r) dr ^     (w¿s, r0)L(r0) + q(s)) ds-* -co.
JrUo) Jto

To prove the second statement we need only show that r=0 is quasi-

uniformly asymptotically stable as the uniform stability of /-=0 follows

from Theorem 2.

Suppose r(t) is a solution of (1) with r(t0)<ô(r0) and let r¡>0 he given.

As r=0 is uniformly stable, there exists (3X>0 so that if /•(r1)<¿i then

r(t)<r¡ for all f^'i- Choose T=T(MJ where M1 = ^iL(r)dr. Arguing

as before, we see that

L(r)dr<\   L(r)dr
Jrit0) Jro

where r2=r0+7 and so /•(r2)<ó1. Hence we have r(t)<r¡, for all t^.

t0+T, and the proof is complete.

As an application of Theorems 2 and 3, consider

(7) r' = a(t)r* + b(tY

where a and b are continuous on [0, co) and l^a</5. Choosing L(r)=

(l/ra), w1(t,r)=b+(t)rß, and w2(t,r)=a(t)rx-b_(t)rß we see that the zero

solution of (7) is stable if

Í\a(s) + b+(Sy0-*) ds
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is bounded for some r0>0 and for every t^.t0. It is equi-asymptotically

stable if

r(a(s) + b+(s)4-°)ds= -co.
Jt0
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