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EMBEDDING  RATIONAL  DIVISION  ALGEBRAS1

BURTON  FEIN

Abstract. Necessary and sufficient conditions are given for two

A"-division rings, K an algebraic number field, to have precisely

the same set of subfields. Using this, an example is presented of two

X-division rings having precisely the same set of subfields such that

only one of the division rings can be embedded in a Q-division ring.

Let K be a field. By a ^-division ring we mean a finite-dimensional

division algebra with center K. If D is a A"-division ring and k is a field,

k<^K, we say that D is Ac-adequate if D can be embedded in a Ac-division

ring. Similarly, if L is a field, we say that L is Ac-adequate if L is a subfield

of some Ac-division ring. Clearly, if D is Ac-adequate then so is every sub-

field of D. In [4] the converse was raised: if every subfield of D is

Ac-adequate, must D be Ac-adequate? We show that the answer to this ques-

tion is no by exhibiting two A"-division rings D, and D2 having precisely

the same set of subfields and such that D1 is Ac-adequate (and so every

subfield of D2 is also Ac-adequate) but D2 is not /V-adequate.

Throughout this paper K will denote an algebraic number field. We

will use freely the classification theory of /¿"-division algebras by means of

Hasse invariants. The reader is referred to [3] for the relevant theory. If

0> is a prime of K and D is a ^-division ring, we denote the Hasse invariant

of D at SP by inv^ D. The order of inv^, D in Q/Z is denoted by l.i.¿, D.

Here Q denotes the field of rational numbers and Z is the ring of ordinary

integers. We denote the completion of K at the prime 3P by K&. The

dimension of D over K is denoted by [D:K]\ we use the same notation

for the dimension of field extensions.

We begin by establishing criteria for two /^-division rings to have

precisely the same set of subfields.

Theorem 1. Let Dx and D2 be K-division rings. Then Dx and D2 have

precisely the same set of subfields if and only ifW.j, D1 = ].i.J, D2for all

primes 0" of K.
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Proof. Suppose Dx and D2 have precisely the same set of subfields

but for some prime 3* of K we have l.i.^ D1—n>m—l.i.^ D2. Using the

Griinwald-Wang theorem [2, Theorem 5, p. 105] we can construct a

cyclic extension L of K of degree [D2:K]1'2 such that L is a splitting field

for D2 and such that the local degree of L over K at 3* equals m. It follows

that L is a subfield of D2 [1, Theorem 27, p. 61] and so L is a subfield

of Z)j. Since Dx and D2 have the same maximal subfields, £ is a maximal

subfield of Dx. But then n divides m, the local degree of L over K at 3 by

[4, (0.1), p. 413]. This establishes the result in one direction. Conversely,

suppose \\.# Dx=\.i.j, D2 for all primes 3 of K. We need only check

that Dx and D2 have the same set of maximal subfields. Let L be a maximal

subfield of Dj. Then l.i.^ Dx divides [L#:Kp] for every prime <W of L

extending 3 (see (0.1) of [4]). Thus L also splits D2.

Since the index of Dx equals the least common multiple of {Li.j, Dx),

it follows that [£)1:A']=[Z)2:A'] and so L is a maximal subfield of D2.

This proves the theorem.

Corollary 2. Let Dx and D2 be quaternion algebras over K. Then

^1=^2 if and only if Dx and D2 have precisely the same set of subfields.

Proof. Since Di is quaternion, l.i.^ Dt= 1 or 2. Thus \.i.j> Dx=\.i.j, D2

implies invjj Dx = in\j, D2 and the result now follows from [3, Satz 8,

p. 119].
The following result is implicit in [4].

Proposition 3. Let K be a normal extension of k and let D be a K-

division ring. Suppose there is a prime 3 of k such that inv# D^in\w D

for two primes <WX andaJ/2 of K extending 3. Then D is not k-adequate.

Proof. Suppose D<^ D0, D0 a /t-division ring. As in the proof of

[4, Theorem 1, p. 415], we have Centflo (K)^D ®K D', where CentD (AT)

is the centralizer of AT in D0 and D' is a /¿-division ring. By Lemma 1 of

[4], CentDo (K)~D0 ®k K. Since K\k is normal, [**,:*>]= l**,:M-

Thus inv^ Cent/j (AT)=inv^2 Cent/, (K). This yields invv/i D' — inv# £)' =

in%2 D — in\9i D^O (mod 1). We conclude that for /=1 or 2, there is a

prime q dividing I.i.^. D' such that q also divides l.i.# D for some/. This

contradicts (0.4) of [4].

We can now exhibit our example.

Example. Let AT be a cyclic extension of Q of degree 5 and let p be a

prime of Q splitting completely in A". Let r, s, and t be primes of Q that

remain prime in K. Such primes exist (see [2, Chapter 5, Theorem 3]).

Let Dx be the /¿-division ring having invr Dx = l, invs Dx=j¡, inv^, Dx=^

for all primes 3 of Kextending/», and inyy/ Dx = 0 for all other primes 3
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of K. Let D be the (^-division ring with inVj, D — \, invr D=^T, invs D=%%,

inv( D—%, and inva.Z)=0 for all other primes q of Q. These division

algebras exist by [3, Satz 9, p. 119]. Let L be a cyclic extension of K of

degree 5 having local degree 5 at all primes of K extending p, r, and s.

The existence of L is guaranteed by the Grünwald-Wang theorem. Since

[D:Q]1I2=25=[L:Q], Lisa maximal subfield of D by (0.1) of [4]. Thus

A<= D. Let Centjr; (K) be the centralizer of A" in D. This is a /¿"-division ring

by the double centralizer theorem and has the same invariants as D1 by

[4, Lemma 1, p. 413]. Thus Cent,, (K)^Dt so Dr is ^-adequate. Let D2

be the A"-division ring having invr D2=l, inv, D2 = i-, invPi D2=±,

inVp, D2=i, invi3 D2=invp^ D2 = in\P;¡ Z>2= f, where />,, p2, p3, /»4, and //5

are the primes of K extending p, and invy Z>2 = 0 for all other primes 0

of K. By Theorem 1, Dx and Z)2 have precisely the same set of subfields.

Proposition 3 shows that D2 is not (^-adequate.

We note that the above argument can be generalized so as to yield two

A"-division rings D1 and D2 having the «ame subfields with only one of D1

or D2 being Ac-adequate whenever A is a cyclic extension of k of prime

power degree pr with pr>2.
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