EMBEDDING RATIONAL DIVISION ALGEBRAS¹

BURTON FEIN

ABSTRACT. Necessary and sufficient conditions are given for two K-division rings, K an algebraic number field, to have precisely the same set of subfields. Using this, an example is presented of two K-division rings having precisely the same set of subfields such that only one of the division rings can be embedded in a Q-division ring.

Let K be a field. By a K-division ring we mean a finite-dimensional division algebra with center K. If D is a K-division ring and k is a field, $k \subseteq K$, we say that D is k-adequate if D can be embedded in a k-division ring. Similarly, if L is a field, we say that L is k-adequate if L is a subfield of some k-division ring. Clearly, if D is k-adequate then so is every subfield of D. In [4] the converse was raised: if every subfield of D is k-adequate, must D be k-adequate? We show that the answer to this question is no by exhibiting two K-division rings D_1 and D_2 having precisely the same set of subfields and such that D_1 is k-adequate (and so every subfield of D_2 is also k-adequate) but D_2 is not k-adequate.

Throughout this paper K will denote an algebraic number field. We will use freely the classification theory of K-division algebras by means of Hasse invariants. The reader is referred to [3] for the relevant theory. If \mathscr{P} is a prime of K and D is a K-division ring, we denote the Hasse invariant of D at \mathscr{P} by $\operatorname{inv}_{\mathscr{P}} D$. The order of $\operatorname{inv}_{\mathscr{P}} D$ in Q/Z is denoted by l.i. $\mathscr{P} D$. Here Q denotes the field of rational numbers and Z is the ring of ordinary integers. We denote the completion of K at the prime \mathscr{P} by $K_{\mathscr{P}}$. The dimension of D over K is denoted by [D:K]; we use the same notation for the dimension of field extensions.

We begin by establishing criteria for two K-division rings to have precisely the same set of subfields.

THEOREM 1. Let D_1 and D_2 be K-division rings. Then D_1 and D_2 have precisely the same set of subfields if and only if $\text{l.i.}_{\mathcal{P}} D_1 = \text{l.i.}_{\mathcal{P}} D_2$ for all primes \mathcal{P} of K.

© American Mathematical Society 1972

Received by the editors July 19, 1971.

AMS 1970 subject classifications. Primary 16A40; Secondary 12A65.

Key words and phrases. Rational division algebra, Hasse invariant, Grünwald-Wang theorem.

¹ The preparation of this paper was supported in part by NSF Grant GP-29068.

PROOF. Suppose D_1 and D_2 have precisely the same set of subfields but for some prime \mathcal{P} of K we have $\lim_{\mathcal{P}} D_1 = n > m = \lim_{\mathcal{P}} D_2$. Using the Grünwald-Wang theorem [2, Theorem 5, p. 105] we can construct a cyclic extension L of K of degree $[D_2:K]^{1/2}$ such that L is a splitting field for D_2 and such that the local degree of L over K at \mathcal{P} equals m. It follows that L is a subfield of D_2 [1, Theorem 27, p. 61] and so L is a subfield of D_1 . Since D_1 and D_2 have the same maximal subfields, L is a maximal subfield of D_1 . But then n divides m, the local degree of L over K at \mathcal{P} by [4, (0.1), p. 413]. This establishes the result in one direction. Conversely, suppose $\lim_{\mathcal{P}} D_1 = \lim_{\mathcal{P}} D_2$ for all primes \mathcal{P} of K. We need only check that D_1 and D_2 have the same set of maximal subfields. Let L be a maximal subfield of D_1 . Then $\lim_{\mathcal{P}} D_1$ divides $[L_{\mathcal{Y}}:K_{\mathcal{P}}]$ for every prime \mathcal{Y} of L extending \mathcal{P} (see (0.1) of [4]). Thus L also splits D_2 .

Since the index of D_1 equals the least common multiple of $\{l.i, J_1\}$, it follows that $[D_1:K]=[D_2:K]$ and so L is a maximal subfield of D_2 . This proves the theorem.

COROLLARY 2. Let D_1 and D_2 be quaternion algebras over K. Then $D_1 \cong D_2$ if and only if D_1 and D_2 have precisely the same set of subfields.

PROOF. Since D_i is quaternion, $\lim_{\mathscr{P}} D_i = 1$ or 2. Thus $\lim_{\mathscr{P}} D_1 = \lim_{\mathscr{P}} D_2$ implies $\operatorname{inv}_{\mathscr{P}} D_1 = \operatorname{inv}_{\mathscr{P}} D_2$ and the result now follows from [3, Satz 8, p. 119].

The following result is implicit in [4].

PROPOSITION 3. Let K be a normal extension of k and let D be a Kdivision ring. Suppose there is a prime \mathcal{P} of k such that $\operatorname{inv}_{\mathscr{Y}_1} D \neq \operatorname{inv}_{\mathscr{Y}_2} D$ for two primes \mathscr{Y}_1 and \mathscr{Y}_2 of K extending \mathcal{P} . Then D is not k-adequate.

PROOF. Suppose $D \subseteq D_0$, D_0 a k-division ring. As in the proof of [4, Theorem 1, p. 415], we have $\operatorname{Cent}_{D_0}(K) \cong D \otimes_K D'$, where $\operatorname{Cent}_{D_0}(K)$ is the centralizer of K in D_0 and D' is a K-division ring. By Lemma 1 of [4], $\operatorname{Cent}_{D_0}(K) \sim D_0 \otimes_k K$. Since K|k is normal, $[K_{\mathscr{Y}_1}:k_{\mathscr{Y}}] = [K_{\mathscr{Y}_2}:k_{\mathscr{Y}}]$. Thus $\operatorname{inv}_{\mathscr{Y}_1} \operatorname{Cent}_{D_0}(K) = \operatorname{inv}_{\mathscr{Y}_2} \operatorname{Cent}_{D_0}(K)$. This yields $\operatorname{inv}_{\mathscr{Y}_1} D' = \operatorname{inv}_{\mathscr{Y}_2} D' \equiv \operatorname{inv}_{\mathscr{Y}_2} D - \operatorname{inv}_{\mathscr{Y}_1} D \neq 0 \pmod{1}$. We conclude that for i=1 or 2, there is a prime q dividing l.i. \mathscr{Y}_i D' such that q also divides l.i. \mathscr{Y}_j D for some j. This contradicts (0.4) of [4].

We can now exhibit our example.

EXAMPLE. Let K be a cyclic extension of Q of degree 5 and let p be a prime of Q splitting completely in K. Let r, s, and t be primes of Q that remain prime in K. Such primes exist (see [2, Chapter 5, Theorem 3]). Let D_1 be the K-division ring having $\text{inv}_r D_1 = \frac{1}{5}$, $\text{inv}_s D_1 = \frac{4}{5}$, $\text{inv}_s D_1 = \frac{1}{5}$ for all primes \mathscr{P} of K extending p, and $\text{inv}_s D_1 = 0$ for all other primes \mathscr{P}

of K. Let D be the Q-division ring with $\operatorname{inv}_p D = \frac{1}{5}$, $\operatorname{inv}_r D = \frac{1}{25}$, $\operatorname{inv}_s D = \frac{24}{5}$, $\operatorname{inv}_t D = \frac{4}{5}$, and $\operatorname{inv}_q \cdot D = 0$ for all other primes q of Q. These division algebras exist by [3, Satz 9, p. 119]. Let L be a cyclic extension of K of degree 5 having local degree 5 at all primes of K extending p, r, and s. The existence of L is guaranteed by the Grünwald-Wang theorem. Since $[D:Q]^{1/2}=25=[L:Q]$, L is a maximal subfield of D by (0.1) of [4]. Thus $K \subset D$. Let $\operatorname{Cent}_D(K)$ be the centralizer of K in D. This is a K-division ring by the double centralizer theorem and has the same invariants as D_1 by [4, Lemma 1, p. 413]. Thus $\operatorname{Cent}_D(K) \cong D_1$ so D_1 is Q-adequate. Let D_2 be the K-division ring having $\operatorname{inv}_r D_2 = \frac{1}{5}$, $\operatorname{inv}_s D_2 = \frac{4}{5}$, $\operatorname{inv}_{p_1} D_2 = \frac{1}{5}$, $\operatorname{inv}_{p_2} D_2 = \frac{3}{5}$, $\operatorname{inv}_{p_3} D_2 = \operatorname{inv}_{p_4} D_2 = \operatorname{inv}_{p_5} D_2 = \frac{2}{5}$, where p_1, p_2, p_3, p_4 , and p_5 are the primes of K extending p, and $\operatorname{inv}_{\mathscr{P}} D_2 = 0$ for all other primes \mathscr{P} of K. By Theorem 1, D_1 and D_2 have precisely the same set of subfields. Proposition 3 shows that D_2 is not Q-adequate.

We note that the above argument can be generalized so as to yield two K-division rings D_1 and D_2 having the same subfields with only one of D_1 or D_2 being k-adequate whenever K is a cyclic extension of k of prime power degree p^r with $p^r > 2$.

References

1. A. A. Albert, *Structure of algebras*, Amer. Math. Soc. Colloq. Publ., vol. 24, Amer. Math. Soc., Providence, R.I., 1939. MR 1, 99.

2. E. Artin and J. Tate, *Class field theory*, Harvard Univ. Press, Cambridge, Mass., 1961. (Cf. MR 36 #6383.)

3. M. Deuring, *Algebren*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 41, Springer-Verlag, New York, 1968. MR 37 #4106.

4. B. Fein and M. Schacher, *Embedding finite groups in rational division algebras*. I, J. Algebra 17 (1971), 412–428.

DEPARTMENT OF MATHEMATICS, OREGON STATE UNIVERSITY, CORVALLIS, OREGON 97331