CONTINUOUS DEPENDENCE ON A IN THE D_1AD_2 THEOREMS

RICHARD SINKHORN

ABSTRACT. It has been shown by Sinkhorn and Knopp and others that if A is a nonnegative square matrix such that there exists a doubly stochastic matrix B with the same zero pattern as A, then there exists a unique doubly stochastic matrix of the form D_1AD_2 where D_1 and D_2 are diagonal matrices with positive main diagonals. Sinkhorn and Knopp have also shown that if A has at least one positive diagonal, then the sequence of matrices obtained by alternately normalizing the row and column sums of A will converge to a doubly stochastic limit. It is the intent of this paper to show that D_1AD_2 and/or the limit of this iteration, when either exists, is continuously dependent upon the matrix A.

Introduction. An $N \times N$ matrix $A = (a_{ij})$ is said to be nonnegative if every $a_{ij} \ge 0$. For such a matrix A we write $A \ge 0$.

An $N \times N$ matrix $A = (a_{ij})$ is said to be doubly stochastic if $A \ge 0$ and if $\sum_{k=1}^{N} a_{ik} = \sum_{k=1}^{N} a_{kj} = 1$ for all i and j. The set of $N \times N$ doubly stochastic matrices is denoted by Ω_{N} .

We say that the $N \times N$ nonnegative matrices A and B have the same pattern if $a_{ij} = 0 \Leftrightarrow b_{ij} = 0$. We say that the $N \times N$ nonnegative matrix A has a subpattern of an $N \times N$ nonnegative matrix B if $a_{ij} = 0 \Rightarrow b_{ij} = 0$. If A is an $N \times N$ nonnegative matrix such that there exists a $B \in \Omega_N$ with the same pattern as A, we say that A has doubly stochastic pattern. The set of all $N \times N$ nonnegative matrices with doubly stochastic pattern is denoted by $\mathscr{P}(\Omega_N)$. If A is an $N \times N$ nonnegative matrix and if there exists a $B \in \Omega_N$ such that A has a subpattern of B, we say that A has doubly stochastic subpattern. The set of all $N \times N$ nonnegative matrices with doubly stochastic subpattern is denoted by $\mathscr{S}(\Omega_N)$. Observe that $\mathscr{P}(\Omega_N) \subseteq \mathscr{S}(\Omega_N)$.

We denote by S_N the set of all permutations of $1, \dots, N$. If A is an $N \times N$ matrix and $\sigma \in S_N$, the set of elements $a_{1\sigma(1)}, \dots, a_{N\sigma(N)}$ is called a diagonal of A. If every $a_{i\sigma(i)} > 0$, we say that the diagonal is positive. In case σ is the identity permutation, we call the diagonal the main diagonal of A.

Received by the editors November 6, 1970.

AMS 1970 subject classifications. Primary 15A51, 15A15; Secondary 15A21.

Key words and phrases. Doubly stochastic matrix, permanent, doubly stochastic pattern, doubly stochastic subpattern.

If A is an $N \times N$ matrix, we define the permanent of A, per A, by

$$per A = \sum_{\sigma \in S_{\mathbf{Y}}} \prod_{i=1}^{N} a_{i\sigma(i)}.$$

In [2], Sinkhorn and Knopp show that if $A \in \mathcal{P}(\Omega_N)$, there exists a unique matrix of the form $D_1AD_2 \in \Omega_N$ where D_1 and D_2 are diagonal matrices with positive main diagonals. They show that D_1AD_2 is the limit of a sequence of matrices obtained by alternately scaling the rows and columns of A. They show in fact that this matrix sequence will converge to a limit in Ω_N if and only if $A \in \mathcal{P}(\Omega_N)$. The limit has the form D_1AD_2 , however, only if $A \in \mathcal{P}(\Omega_N)$.

It is the intent of this paper to show that D_1AD_2 is a continuous function of A on $\mathscr{P}(\Omega_N)$ and that the limit of the iteration is a continuous function of A on $\mathscr{S}(\Omega_N)$. The following result of Sinkhorn and Knopp [3] is the main tool in the development.

Theorem 1. Distinct $N \times N$ doubly stochastic matrices A and B do not have proportional corresponding diagonal products, i.e. there is no k>0 such that for each $\sigma \in S_N$, $\prod_{i=1}^N a_{i\sigma(i)} = k \prod_{i=1}^N b_{i\sigma(i)}$.

The following celebrated theorem of G. Birkhoff may be employed to show that per A>0 for any $A\in\Omega_N$. For a proof see [1, p. 98].

THEOREM 2. The set of all $N \times N$ doubly stochastic matrices forms a convex polyhedron with the permutation matrices as vertices.

Results and consequences.

THEOREM 3. Suppose that $A \ge 0$ is an $N \times N$ matrix such that per A > 0. Suppose that for each positive integer n and $k = 1, 2, A_k(n) \ge 0$ is an $N \times N$ matrix such that for every permutation $\sigma \in S_N$, $\lim_{n \to \infty} \prod_{i=1}^N a_{ki\sigma(i)}(n) = \prod_{i=1}^N a_{i\sigma(i)}$. If for each positive integer n and $k = 1, 2, E_k(n)$ and $F_k(n)$ are $N \times N$ diagonal matrices with positive main diagonals such that

$$\lim_{n\to\infty} E_k(n)A_k(n)F_k(n) = P_k \in \Omega_N,$$

then necessarily $P_1 = P_2$.

PROOF. For k=1, 2, put $K_k = \text{per } P_k/\text{per } A$. Since each $P_k \in \Omega_N$, per $P_k > 0$ and so each $K_k > 0$. It is seen that for each such value of k, per $A_k(n) \rightarrow \text{per } A$, and thus

$$\lim_{n\to\infty} \operatorname{per} E_k(n) F_k(n) = \lim_{n\to\infty} \frac{\operatorname{per} E_k(n) A_k(n) F_k(n)}{\operatorname{per} A_k(n)} = \frac{\operatorname{per} P_k}{\operatorname{per} A} = K_k.$$

Let $\Delta_A \subseteq S_N$ denote those permutations σ such that $a_{1\sigma(1)}, \dots, a_{N\sigma(N)}$ is a positive diagonal in A. Since per A > 0, $\Delta_A \neq \emptyset$.

Put $P_k = (p_{kij})$ for k = 1, 2. Then for either value of k and any $\sigma \in \Delta_A$,

$$\prod_{i=1}^{N} \frac{p_{ki\sigma(i)}}{a_{i\sigma(i)}} = \lim_{n \to \infty} \frac{\left[\operatorname{per} E_{k}(n) F_{k}(n) \right] \prod_{i=1}^{N} a_{ki\sigma(i)}(n)}{\prod_{i=1}^{N} a_{i\sigma(i)}} = K_{k},$$

where $A_k(n) = (a_{kij}(n))$.

From

$$\begin{split} \operatorname{per} P_k &= \sum_{\sigma \in S_N} \prod_{i=1}^N \ p_{ki\sigma(i)} = \sum_{\sigma \in \Delta_A} \prod_{i=1}^N \ p_{ki\sigma(i)} + \sum_{\sigma \in S_N - \Delta_A} \prod_{i=1}^N \ p_{ki\sigma(i)} \\ &= K_k \sum_{\sigma \in \Delta_A} \prod_{i=1}^N \ a_{i\sigma(i)} + \sum_{\sigma \in S_N - \Delta_A} \prod_{i=1}^N \ p_{ki\sigma(i)} \\ &= K_k \operatorname{per} A + \sum_{\sigma \in S_N - \Delta_A} \prod_{i=1}^N \ p_{ki\sigma(i)} = \operatorname{per} P_k + \sum_{\sigma \in S_N - \Delta_A} \prod_{i=1}^N p_{ki\sigma(i)}, \end{split}$$

we see that $\prod_{i=1}^{N} p_{ki\sigma(i)} = 0$ for each $\sigma \in S_N - \Delta_A$, k=1,2. Since $\prod_{i=1}^{N} a_{i\sigma(i)} = 0$ for each $\sigma \in S_N - \Delta_A$, it follows that $\prod_{i=1}^{N} p_{1i\sigma(i)} = K_1 \prod_{i=1}^{N} a_{i\sigma(i)} = (K_1/K_2) \prod_{i=1}^{N} p_{2i\sigma(i)}$ for all $\sigma \in S_N$. Thus, by Theorem 1, $P_1 = P_2$.

COROLLARY 1. Let $A \ge 0$ be an $N \times N$ matrix such that per A > 0. Put $\overline{A} = (\overline{a}_{ij})$ where $\overline{a}_{ij} = a_{ij}$ if a_{ij} lies on at least one positive diagonal in A, and $\overline{a}_{ij} = 0$ otherwise. Let D_1 and D_2 be diagonal matrices with positive main diagonals such that $D_1 \overline{A} D_2 \in \Omega_N$. Then the limit of the iteration of alternately normalizing the row and column sums of A is equal to $D_1 \overline{A} D_2$.

PROOF. Let the *n*th term of the iteration be denoted by $E_1(n)A_1(n)F_1(n)$ where $A_1(n)\equiv A$. Also put $E_2(n)=D_1$, $A_2(n)=\bar{A}$, and $F_2(n)=D_2$ for all *n*. It follows from the Sinkhorn-Knopp result [2] that $\lim_{n\to\infty} E_1(n)A_1(n)F_1(n)$ exists. Since $\prod_{i=1}^N a_{ki\sigma(i)}(n)=\prod_{i=1}^N a_{i\sigma(i)}=\prod_{i=1}^N \bar{a}_{i\sigma(i)}$ for any $\sigma\in S_N$, Theorem 3 shows that this limit is in fact $D_1\bar{A}D_2$.

COROLLARY 2. Let $A \ge 0$ be an $N \times N$ matrix such that per A > 0. For any $\varepsilon > 0$ suppose that $A(\varepsilon) \ge 0$ is an $N \times N$ matrix such that

$$\lim_{\varepsilon \downarrow 0} \prod_{i=1}^{N} a_{i\sigma(i)}(\varepsilon) = \prod_{i=1}^{N} a_{i\sigma(i)}$$

for every $\sigma \in S_N$. Let \bar{A} , D_1 , and D_2 be as in Corollary 1, and let $\bar{A}(\varepsilon)$, $D_1(\varepsilon)$, and $D_2(\varepsilon)$ be the corresponding matrices for $A(\varepsilon)$ whenever per $A(\varepsilon) > 0$. Then

$$\lim_{\varepsilon \downarrow 0} D_1(\varepsilon) \bar{A}(\varepsilon) D_2(\varepsilon) = D_1 \bar{A} D_2.$$

PROOF. Observe that $D_1(\varepsilon)\bar{A}(\varepsilon)D_2(\varepsilon)$ exists for ε sufficiently small since for such values of ε , per $A(\varepsilon) > 0$.

Since Ω_N is compact, the set $\{D_1(\varepsilon)\bar{A}(\varepsilon)D_2(\varepsilon)\}$ is bounded and therefore has at least one limit point as $\varepsilon \downarrow 0$. Of course all the limit points of this set are doubly stochastic. Moreover, since

$$\lim_{\varepsilon \downarrow 0} \prod_{i=1}^{N} \bar{a}_{i\sigma(i)}(\varepsilon) = \lim_{\varepsilon \downarrow 0} \prod_{i=1}^{N} a_{i\sigma(i)}(\varepsilon) = \prod_{i=1}^{N} a_{i\sigma(i)} = \prod_{i=1}^{N} \bar{a}_{i\sigma(i)}$$

for all $\sigma \in S_N$, any two convergent subsequences of $\{D_1(\varepsilon)\bar{A}(\varepsilon)D_2(\varepsilon)\}$ must have the same limit by Theorem 3. Thus the set $\{D_1(\varepsilon)\bar{A}(\varepsilon)D_2(\varepsilon)\}$ has exactly one limit point as $\varepsilon \downarrow 0$ and so $\lim_{\varepsilon \downarrow 0} D_1(\varepsilon)\bar{A}(\varepsilon)D_2(\varepsilon) = P$ exists. Clearly $P \in \Omega_N$.

Put $E_1(n) = D_1(1/n)$, $A_1(n) = \bar{A}(1/n)$, and $F_1(n) = D_2(1/n)$ and put $E_2(n) = D_1$, $A_2(n) = \bar{A}$, and $F_2(n) = D_2$ for $n = 1, 2, \dots$. By Theorem 3,

$$\lim_{n\to\infty} E_1(n)A_1(n)F_1(n) = P = D_1\bar{A}D_2 = \lim_{n\to\infty} E_2(n)A_2(n)F_2(n).$$

Whence

$$\lim_{\varepsilon \downarrow 0} D_1(\varepsilon) \bar{A}(\varepsilon) D_2(\varepsilon) = D_1 \bar{A} D_2.$$

Corollaries 3 and 4 which follow are immediate consequences of Corollaries 1 and 2.

COROLLARY 3. The limit of the iteration of alternately normalizing the row and column sums of an $N \times N$ matrix A is a continuous function of A on $\mathcal{S}(\Omega_N)$.

COROLLARY 4. For each $A \in \mathcal{P}(\Omega_N)$ there is a unique matrix $D_1AD_2 \in \Omega_N$ where D_1 and D_2 are diagonal matrices with positive main diagonals. The map $A \rightarrow D_1AD_2$ is continuous on $\mathcal{P}(\Omega_N)$.

The author is most grateful for many enlightening discussions with Paul Knopp and Mark Hedrick concerning this presentation.

REFERENCES

- 1. Marvin Marcus and Henryk Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon, Boston, Mass., 1964. MR 29 #112.
- 2. Richard Sinkhorn and Paul Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific J. Math. 21 (1967), 343-348. MR 35 #1617.
- 3. —, Problems involving diagonal products in nonnegative matrices, Trans. Amer. Math. Soc. 136 (1969), 67-75. MR 38 #2151.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HOUSTON, HOUSTON, TEXAS 77004