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DIRICHLET    FINITE    SOLUTIONS   OF    Au=Pu

IVAN  J.  SINGER1

Abstract. The purpose of this paper is to give a necessary and

also a sufficient condition for a Dirichlet finite harmonic function

on a Riemann surface to be represented as a difference of a Dirichlet

finite solution of \u=Pu (P^O) and a Dirichlet finite potential of

signed measure.

1. Let P=P(z) dx dy (z=x+iy) be a nonnegative not identically zero

a-Hölder continuous (0<a^l) second order differential on a Riemann

surface R and PD(R) be the Hubert space of all Dirichlet finite solutions of

(1) Au(z) = P(z)u(z),       A ■ = Ad2-jdzdz,

on R with the scalar product given by mixed Dirichlet integral, i.e.

(u, v) = DR(u, v)=$H duA*dv, not the energy integral.

The study of PD(R) was begun by Royden [6]. We will use the fact

shown by Nakai [2] that PD(R) forms a vector lattice under the natural

order in PD(R). We also use the Glasner-Katz maximum principle [1]

that the modulus of every function in PD(R) takes its maximum on the

Royden harmonic boundary. The recent result of Nakai [3] that PBD(R)

is dense in PD(R) will not be made use of.

Let A(R) be the Royden harmonic boundary and HD(R) be the class of

Dirichlet finite harmonic functions on R. (For the basic materials from

the Royden compactification and the class HD(R) we refer to the mono-

graph of Sario and Nakai [7].) One of the important problems in the theory

of PD(R) which is not fully developed yet is to describe the distribution of

PD(R)|A(R) in HD(R)|A(R). We will prove a theorem which contributes

to this question.

2. If R is parabolic, then PD(R) = {0} (cf. Royden [6]), which case offers

no interest. Therefore we assume throughout the paper that R is hyper-

bolic. Let M(R) be the class of all Dirichlet finite Tonelli functions on

R and MA(R) the subclass of M(R) consisting of functions / with

/|A(R)=0 (cf. [7]). We then have the orthogonal decomposition

M(R) = HD(R) + MA(R),

Received by the editors May 26, 1971.

AMS 1970 subject classifications. Primary 31A05, 58G99.

1 The work was sponsored by the U.S. Army Research Office—Durham, Grant

DA-ARO-D-31-124-71-G20, UCLA.
© American Mathematical Society 1972

464



DIRICHLET FINITE SOLUTIONS OF Au=Pu 465

and since PD(R)^M(R), we can define an operator 7:PD(Ä)->HD(J?)

characterized by

(2) u- Tue MA(R).

Using results cited in §1 we can show that Fis a vector space isomorphism

from PD(/v) onto

(3) XD(R) = T(?D(R))

such that w>0 is equivalent to Tu>0 and supñ \u\=supI{ \Tu\. Therefore

the study of PDLR) can be reduced to that of XD(R) and for this reason

we call F the reduction operator for Dirichlet finite solutions. It can be seen

that

u = Tu-±f G(; t)P(l)ua) dtdri      a = S + ir¡)
2n Jr

(cf. [3]). We will discuss when heHD(R) belongs to XD(R).

3. Let O be a regular subregion of R. By the P-unit en on O we mean the

solution en of (1) on D. with the continuous boundary values 1. The net

{en} for every regular subregion Q is decreasing and hence convergent to a

solution on R:

en = lim en ^ 0

which we call the P-unit on R. The only bounded solution of (1) on R is

zero if and only if eR=0 (Ozawa [5], Royden [6]). We describe XD(R)

in terms of {eQ} and eR as follows:

Theorem.    Suppose that heHD(R)   IfheXD(R), then

(4) D1{(eRh) < co.

Conversely if

(5) lim sup Da(enh) < co,

then heXn(R).

The proof will be given in §§4 and 7. The condition (4) is necessary

for heXD(R) but not sufficient. In fact, let R = {\z\<\) and P(z) =

4(l + |z|2)(l-|z|2)-2- Then <?ñ=0 and XD(R) = {0} (Royden [6]), while (4)

is trivially valid for every heHD(R). The condition (5) is sufficient for

heXD(R) but not necessary. We exhibit an instructive example due to Nakai

[4]. Let tf={|z|>l} and P(z)=l + |z|-x. Consider Q„ = {1+/î^<|z|</i}

(n=2, 3, • • •) which exhausts R as n-^co. Denote by en the P-unit on Q„.

The P-unit eR on R is given by

eR(z) = (e re-2'!-1 dtY'■ eul ■ J Y2<- r1 dt
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and a straightforward calculation shows that eRePD(R) and hence

leXD(R). We also see that

en(z) = *neM+ßne^\r^e-2tr1dt

where

Vl+l/n /    Jl
and

^ = (e~n - e~[1+lln)) { P    e-%trx dtX\
\Jl+l/n /

However an easy but cumbersome computation shows that

DR(l-en) = (9(n)       («-> oo)

and (5) is not valid for h—leXD(R). By Fatou's lemma, (5) implies (4).

That the converse is not necessarily true is also seen from the above

example.

4. Necessity of (4). Suppose heXD(R). Since XD(R) forms a vector

lattice along with PD(R), we may assume h>0 to prove (4). Let wePD(R)

such that h=Tu and let tp=u—h. We will prove (4) both for u and q>.

We write l\\n=(Dü())1/2. By Green's formula

ll«(l - «o)lln = - f "(1 - ea)d *d(u(l - en))
Ja

= - f u\\ - ea)2P + f u\\ - ea)eüP
Ja Ja

+ 2   w(l — ea) du A *den
Ja.

< f «(1 - ea)Pu + 2 i (1 - en) du A *(u dea)
Ja Ja

=    u(l — e^íí *du + 2    (1 — en) du A *(í¿(uen) — eadu).
Ja Ja

Observe that jçlu(l—ea)d*du=—(nd(u(l—en))A*du. By Schwarz's

inequality

ll«(l - e*)\\Q ̂ ||«(1 - en)\\a |«||a + 2 ||«1Q |iMfa|a + 2 ||u||n.

In view of ||Men|ln^ll"(l-^)lln + ll"lln> we deduce

l«(l - Cn)llo ̂ 3 ||u(l - ea)\\a- ¡«L + 4 ||«||».

This implies ||w(l—en)lln=4||«llnOr ||wc?n||n^5||M||n. Therefore, by Fatou's

lemma,

DR(eRu) ^ lim inf Da(enu) < 25DR(u) < oo.
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5. Let hQeC(Ù) such that hn is harmonic in Í2 and hn\dQ.=u. Set

<pn=u-ha. Observe A<pa=Puand 9?Q^0. Since Da(ü)=Dn(ha)+Dcl(<pa)

and limn_BAn=A, we infer that <p=\imn^R <pa, dç>=l\mn^R d<pa, and

Dn^cù^D^u). By Green's formula,

IknVnlln = -    eaç>ad *d(ea(pa)
Ja

= -    eçfPaP - I e2Q<pnuP - 2    ea<pa dea A *d<pa
Ja Ja Ja

^ -    fad *du - 2   ea dç>a A *(<pn dea)
Ja Ja

= \d<pa a *du - 2   en d<pa A *(d(eacpa) - ea dcpa).
Ja Ja

By Schwarz's inequality,

\\ea<Pa\\a Ú llVnlln ll«lln + 2 ||?>nlln IknMn + 2 ||gsnlln
^ 2 ||u|in ||enç»n||n + 3 ||u|ß

and therefore lkrJ9'nlln^3 ||k||q. By Fatou's lemma we deduce

DR(eRq>) ̂  lim inf Da(en<Pa) Ú 9DR(u) < co.
£i->JJ

6. Sufficiency of (5). Let usleC(0.) such that Awn(z)=P(z)Hn(z) on Í2

and un\dD.=h. By Green's formula,

II"n - ^nlln = -    («n - hen)d *d(ua - hen)
Ja

= -    (»ti - hen)unP +    («„ - hea)henP
Ja Ja

+ 2    (iin — /ien) d/i A *í¿en
Jo.

- f («n - fcen)8P + 2 i («n - ÄeQ) d/i A *den
Jn Ja

dh A *(d(enun) — ea dua)
n

-l[eadhh *(d(hen)-eadh).
Jo

By Schwarz's inequality,

II»« - heafa ¿ 2 ||A||Q ||en«n||n + 2 ||fc||n |uo||0

+ 2 HAL ||Äen||n + 2 PU2,.

^ 2 f ú
Jn
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By the same estimate as in §4, we deduce lknMnlln = 5|l«nlln and llMolln =

\\^n-hen\\n+\\hea\\Q, and hence

ll«n - hea\\0 ̂  12 ||Ä||n ||u - fcen||n + 14 ||A||n ||fcen||n + 2 \\h\\l

By (5) we conclude that

(6) Da(Uci) £ K < co

for every Q, with a constant K.

7. Fix an ii0 such that P^O on Cl0. Since PD(O0) is a Hubert space with

reproducing kernel (cf. [2]), (6) implies that there exists an exhaustion

{Q„} of R with QB=> O0 such that {uQJ converges uniformly on each com-

pact set of Q.Q. By a diagonal process, we may assume that {un} converges

uniformly on each compact set of R. Let u=lim„_00 un . Because of (6)

and Fatou's lemma we see that wePD(R). We can regard h—u0n as an

element of M0(R)^MA(R). Since lim„_>00 (h — uçi^)=h — u uniformly on

each compact set of R and sup,, DR(h—«nn)<oo, Kawamura's lemma

(cf. [7]) implies that h—ueMA(R), i.e. h=Tu and a fortiori heXD(R).
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