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DIRICHLET FINITE SOLUTIONS OF Au=Pu
IVAN J. SINGER!

ABSTRACT. The purpose of this paper is to give a necessary and
also a sufficient condition for a Dirichlet finite harmonic function
on a Riemann surface to be represented as a difference of a Dirichlet
finite solution of Au=Pu (PZ0) and a Dirichlet finite potential of
signed measure.

1. Let P=P(z) dx dy (z=x+1y) be a nonnegative not identically zero
a-Holder continuous (0<a=1) second order differential on a Riemann
surface R and PD(R) be the Hilbert space of all Dirichlet finite solutions of

8)) Au(z) = P(2)u(z), A-= 40?020z,

on R with the scalar product given by mixed Dirichlet integral, i.e
(4, v)=Dg(u, v)=[ g dur*dv, not the energy integral.

The study of PD(R) was begun by Royden [6]. We will use the fact
shown by Nakai [2] that PD(R) forms a vector lattice under the natural
order in PD(R). We also use the Glasner-Katz maximum principle [1]
that the modulus of every function in PD(R) takes its maximum on the
Royden harmonic boundary. The recent result of Nakai [3] that PBD(R)
is dense in PD(R) will not be made use of.

Let A(R) be the Royden harmonic boundary and HD(R) be the class of
Dirichlet finite harmonic functions on R. (For the basic materials from
the Royden compactification and the class HD(R) we refer to the mono-
graph of Sario and Nakai [7].) One of the important problems in the theory
of PD(R) which is not fully developed yet is to describe the distribution of
PD(R)|A(R) in HD(R)IA(R). We will prove a theorem which contributes
to this question.

2. If Ris parabolic, then PD(R)={0} (cf. Royden [6]), which case offers
no interest. Therefore we assume throughout the paper that R is hyper-
bolic. Let M (R) be the class of all Dirichlet finite Tonelli functions on
R and M A(R) the subclass of M(R) consisting of functions f with

|A(R) 0 (cf. [7]). We then have the orthogonal decomposition

M(R) = HD(R) + M \(R),
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and since PD(R)< M (R), we can define an operator T:PD(R)—~HD(R)
characterized by

) u — Tue M (R).

Using results cited in §1 we can show that T'is a vector space isomorphism
from PD(R) onto

(€) Xp(R) = T(PD(R))

such that u>0 is equivalent to Tu>0 and supp, |u| =supy, | Tu|. Therefore
the study of PD(R) can be reduced to that of X;,(R) and for this reason
we call T the reduction operator for Dirichlet finite solutions. It can be seen
that

u=Tu— —l‘f GO, OP(Qu()) ds dn (L =& + in)
27 JR

(cf. [3]). We will discuss when heHD(R) belongs to Xp(R).

3. Let Q be a regular subregion of R. By the P-unit e, on {2 we mean the
solution e, of (1) on Q with the continuous boundary values 1. The net
{eq} for every regular subregion € is decreasing and hence convergent to a
solution on R:

ep=limeg =0
Q-R
which we call the P-unit on R. The only bounded solution of (1) on R is
zero if and only if ez=0 (Ozawa [S], Royden [6]). We describe X,(R)
in terms of {e,,} and ey, as follows:

THEOREM.  Suppose that heHD(R). If he X;,(R), then

©) Dy(eph) < oo.

Conversely if

(5) lim sup Dg(eqh) < oo,
Q-R

then he X p(R).

The proof will be given in §§4 and 7. The condition (4) is necessary
for heXp(R) but not sufficient. In fact, let R={|z|]<1} and P(z)=
4(1+|z|*(1—|z|?)~2. Then ep=0 and X (R)={0} (Royden [6]), while (4)
is trivially valid for every heHD(R). The condition (5) is sufficient for
heX p(R) but not necessary. We exhibit an instructive example due to Nakai
[4]. Let R={|z|>1} and P(z)=1+]z|t. Consider Q,={l+n"1<|z|<n}
(n=2, 3, - - ) which exhausts R as n—c0. Denote by e, the P-unit on Q.
The P-unit e on R is given by

0 —1 [+2]
ep(z) = (ef et dt) -el"~J et dt
1 Iz}
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and a straightforward calculation shows that exrePD(R) and hence
1eXp(R). We also see that

|zl
e,(2) = azel® + ﬂne"'f e lde
1
where

n —1 (n
®, = e — (e-n _ e—(l+l/n)) (f e 21 dt) f e—2tt—1 dt,
1+1/n 1

Bn = (e — e 111/ (fn et dt)_l.
14+1/n
However an easy but cumbersome computation shows that
Dr(l-e) = 0(m)  (n—> )
and (5) is not valid for hA=1€X,(R). By Fatou’s lemma, (5) implies (4).

That the converse is not necessarily true is also seen from the above
example.

4. Necessity of (4). Suppose heXp(R). Since Xp(R) forms a vector
lattice along with PD(R), we may assume #>>0 to prove (4). Let ucPD(R)
such that h=Tu and let p=u—h. We will prove (4) both for u and ¢.

We write ||-|o=(Dgq(-))/2. By Green’s formula

lu(t — el = — f u(l — ea)d *d(u(l — eg))
Q

and

= —fuz(l — eg)’P +fu2(1 — eg)eqP
Q Q
+ 2Ju(l — eq) du A *deq
Q
§fu(1 — eq)Pu + 2[(1 — eq) du A ¥(u deg)
Q o

=fu(l — eg)d *du + 2f (1 — eq) du A *(d(ueg) — eq du).
Q Q
Observe that [ u(l—eg)d *du=— [ d(u(1—egp))A *du. By Schwarz’s
inequality ,
lu(t — ex)lg = lu(l — eg)llq lula + 2 lullq luealq + 2 lul.
In view of |lueg |l o =Illu(l—eg)lq+llullg, we deduce
lu(l — eg)lla = 3 lu(l — eg)llg- llulla + 4 ula.

This implies ||u(1 —eg)ll o =4llull g or lueqll o =5|ull,. Therefore, by Fatou’s
lemma,
DR(eRu) _.S_ lim inf Dﬂ(eﬂu) § 25DR(u) < Q0.
Q-R
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5. Let hqeC(Q) such that kg is harmonic in Q and hg|0Q=u. Set
pq=u—hg. Observe Ap,=Pu and ¢, =0. Since D(u)=Dg(ho)+ Do(pq)
and limg_, pho=h, we infer that p=limg_,p ¢q, dp=lim,_, 5 dp,, and
D(9q) < Dy(u). By Green’s formula,

||en?’n||?) = —J;)en‘;”ad *d(eq@a)

= —feétp?,P —J eapauP — Zf eq@a deq A *dog
Q Q Q

= [ gud tdu — 2 ea dra A *(padea
a Q

=Ld¢n A *du — 2Len doq /\ *(d(eqpq) — eq dog).

By Schwarz’s inequality,

lea@alla = llgala lulla + 2 l@alla leawala + 2 lpala
= 2 |lullg leagalla + 3 llullg

and therefore ||eqpqllo=3 |lulq. By Fatou’s lemma we deduce
Dy(egyp) = lim inf Dg(eqpqa) = 9D g(u) < oo.
Q-R

6. Sufficiency of (5). Let uqeC(Q) such that Aug(z)=P(z)ug(z) on Q
and uq|0Q=h. By Green’s formula,

o heall = ~ | (4o = hea)d *d(uq — her)
= —L(un — heg)ugP +L(un — heg)heg P
+ ZL(u,, — heg) dh A *deg
= —L(un — heg)’P + 2L(ug — heg) dh A *deg
= Zth A *(d(equg) — eq dug)
—2 fﬂeg dh A *(d(heg) — eq dh).

By Schwarz’s inequality,

lug — hen"?z = 2 |hllq llequglla + 2 lIhllq lualla
+ 2 |lhllg lIkeqllq + 2 [1A]G.
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By the same estimate as in §4, we deduce |lequq |l o =5llugllq and [ugla=
lug—heqllq+ llhegllq, and hence

lug — heally = 12 ||hllq lu — hegllg + 14 |Ihllq I heqlla + 2 |IAll5-
By (5) we conclude that
(6 Dq(ug) = K < 0
for every Q with a constant K.

7. Fix an Q, such that P#0 on €2,. Since PD(£),) is a Hilbert space with
reproducing kernel (cf. [2]), (6) implies that there exists an exhaustion
{Q,} of R with Q,> €, such that {u, } converges uniformly on each com-
pact set of (. By a diagonal process, we may assume that {ug } converges
uniformly on each compact set of R. Let u=lim,_,,, ug . Because of (6)
and Fatou’s lemma we see that uePD(R). We can regard h—uq_as an
element of M, (R)CM A(R). Since lim,_, o, (h—ug )=h—u umformly on
each compact set of R and sup, Dp(h— uQ")<oo Kawamura’s lemma
(cf. [7]) implies that h—ueM ,(R), i.e. h=Tu and a fortiori heXp(R).
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