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ON AN IDENTITY OF ECKFORD COHEN1

M. V. SUBBARAO AND D. SURYANARAYANA

Abstract.  We characterize all  multiplicative arithmetical

functions fk(r) such that an identity of the form

f AMct(«, r) = q„(n)g(k),     g(k) * 0,

holds for all n, where qk(n) is the characteristic function of the set

of fc-free integers and ck(n, r) is the generalized Ramanujan sum.

This characterization yields several arithmetical identities of the

above form including an identity of Eckford Cohen, which occurs as

a special case of our theorem on taking fi,(r)=n(r)IJk(r) and

g(k)=m-

1. Introduction. Throughout the following k denotes a fixed integer

^2. Let Qk denote the set of A--free integers, that is, the integers whose

prime factors are all of multiplicity <k. Let qk(n)=\ or 0 according as

neQk or n$Qk. Also, let £(j)=2»=-i     for s>\.
In 1963, E. Cohen [3, (1)] established the following identity and used it

to obtain an elementary estimate for Qk(x), the number of rc-free integers

<x:

(1) f(^L)ck(n,r) = qk(n)ak),

where /i(r) is the Möbius function, Jk(r) the Jordan totient function of

order k, and ck(n, r) is the generalized Ramanujan sum defined by

/->\ i    \ •«-> (27rian\
(2) ct(n,r)=       2 eXP\^/'

olmod rk);(a,r')k=l

the summation being over all a(modrk), whose greatest common kth

power divisor with r* is 1. This generalization of Ramanujan's sum was

introduced under a slightly different notation by E. Cohen [2] himself in
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1949, who also established [2, (2.5)] the following arithmetic evaluation

of ck(n, r):

(3) ct(n,r)= 2 Mrld).
d\r;dk\n

The object of the present paper is to characterize all multiplicative

arithmetical functions fk{r) such that an identity of the following type

holds for all n:

(4) 5 Ur)ck(n, r) - qk(n)g(k),      g(k) * 0.
r«=l

It may be noted that (1) is a particular case of (4) with fk(r)=p.(r)jjk{r)

and g(k)=m-
The characterization of fk(r) satisfying (4) is given by the following:

Theorem. Let fk(r) be a multiplicative arithmetic function such that

y^Lj fk(r)ck(n, r) is absolutely convergent for all n. Then the identity (4)

holds if and only if
(i) fk{pa)—(\Jrfk(p){p':—^))lp1: for every a_2 and for every prime p;

(ii) g(Ä)#0 and is given by g(k)=\~[T {1—fk(p)}, where the product is

extended over all primes p.

Remark. For the function fk(r)—p{r)jjk(r), we note that fk(p)=

-1 /(/-1) and fk{p*)=0 for every a^2, since Jk(r)=rk \~[p]r (1 -1//>*); so

that the conditions of the theorem are satisfied, thus yielding the identity

(1).

2. Proof of the theorem. Since fk(r) and ck(n, r) are multiplicative

functions of r and the series 2™=i fk(r)ck(n, r) is absolutely convergent, it

can be expanded into an infinite product of Etiler type [4, Theorem 286].

Hence by (3), we have

(5)

J fk(r)ck(n, r) = HI ( S /*0>">»(». P*"))
r=l ft    ^ m~0 '

p    \m~0 tf|j>";<i*|n \dl)

First suppose that fk(p°)={\ +fk(p)(pk—1 ))//»*, for every oc_2 and for

ever)' prime p, and g{k)^0 which is given by g(k)=\~[P {1—fk(p)}. Then

we prove the identity (4), which is equivalent to proving

00

(6) 2/*(**(«, r) = nU -MP)}> tf"eß*>

= 0, if»^e»-
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Now, if neQk, then it is clear that 1 is the only kth power divisor of «,

so that from (5), we get that

2 A(r)ck(n, r) = II (I /^"W")) « I"! U " Mp)}-
r=l p    'm=0 ' p

Let «^0S. Then n can be written uniquely in the form n=n1n2, where

«2>1, («1,m2)=1, Hieß*, n2eLk, Lk being the set of A--full integers, that

is, the integers whose prime factors are all of multiplicity £k. Let «2=

PVPV"' '/>?'• Since n2eLk, oL>k for 1 ̂ i^t. We can write a^w./t+p,,

where w.^1 and 0<p,^ä:—1. From (5) we get that

2 Mr)ck(n, r) = n ( 2 A(Pm)    2     <?P (^) ]
r=l p    lm=0 d\vm:dt\nim \d!\

p;jHnj'm=0 /    2>lm ' m=0 (i|pm;d |n_ \ u / f

a)      =n{i-A(p)}-n(iA(pm) 2
p;pfnj i=l lm=0 dlp^^'lp,1!      \ « / j

= no-A-(/')}
p;p-fns

•n (i +1 /*(P5)ipf - pI-"*] - 4(Au'+i)pr'i

Since /L(/'a)= (1 +/[:(/')(/»*— l))//>* for every a^2 and for every prime p,

we have

=A(p:) - • • • =/*0»r+1) = (i +fk(pM - D)/p?

for l^/'^r. Hence each term in the second product is zero, so that

CO

2fk(r)ck(n,r) = 0   for all n £ (2,.
r=l

Thus (6) is proved, so that the first part of the theorem follows.

Conversely, suppose that (4) holds for all n with g(k)^0. Taking n=1,

we see from (3) that ck{\, r)=(i(r), so that from (4) and (5), we get that

g(k) = 2f*(rWr) = Ei U -MP)h
r=l p

so that condition (ii) of the theorem is satisfied. Since g(k)^0, we have

fk{p)j^\ for every prime p.

Let q be any arbitrary prime. To prove condition (i) of the theorem,
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it is enough if we prove that

(8) fk{q*) = (1 + Uq)(qk ~ D)lqk  for every a = 2.

We prove (8) by complete induction on a.

Now, taking n=qk in (4), we get from (7) (in this case «!=1, «»=9*,

/= 1 and «!=!) that

o = I! {i -Up)} ■ U + Mq)(qk - D -AteV}
7>,P*d

- Le(fc)/d -/*(«))] ■ {l + /*(«)(«* - 1) - A(«V}-

Since g(A)^0, we get that

/*(«*) -d+/*(9X«*-l))/«*,

that is, (8) is true for oc=2.

Suppose that (8) is true for a=2, 3, • • • , ß, where /S=2. We shall prove

(8) for a.=ß+l. Taking n—qßk in (4), we get from (7) (in this case n^l,

n2=qßk, i'=l and that

0 = II {1 "        • (l + 2 Uqa)kak ~ q'a-Vk] ~ Uqß+1)qßk\

so that

qß%(qß+1) = 1 +Mq)(qk - D + 2/*(<f ̂  ~ s""""*]

= i+M?t-i)+«l-9t]

3*
<7<#-m[l +/*(«)(«*- 1)1,

that is, fk(qß+1)=(l+fk(c/)(qk-\))lqk. Hence (8) follows for every a^2.

Thus the proof of the theorem is complete.

3. Some special cases. Taking

A (A + l)p* — (A + B)
hiP) = ~k- and fk(p ) =-—-p — B pk(pk — B)

for every a_2 and for every prime p, where A and B are constants which

have the values 0, 1 or —1, we see that the conditions of the theorem are

satisfied with g(k)=YJp {1— Aj(p,:—B)}. Hence we have the following
identities corresponding to the values of A and 3 given by (1, 0), (1, — 1),
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(1,1), (-1,0), (-1,-1), (-1,1):

(9) i/*(rK(«,r)=^,
r=l t(fc)

(10) IUr)ck(n,r) = qk(n)^,
r=l £(*)

(11) IAO^n, r) - Ü (l " A)-
r=l u    \        // '

(12) 2fk(r)ck(n,r) = qk(n)^-
r-1 U2fc)

(13) 2 A(r)ct(«, r) . ^(h) ^ I! (l + -k).

CO

(14) 2Mr)ck(n,r) = qk(n)ttk).

The infinite products in the right sides of (11) and (13) can be expressed

as infinite products involving the Riemann zeta function using the

following result.

n(i-^r=n«w^,m,>
P    \ P> m-X

for every a and s> 1, where a(m)=m~1 Y.d\m oLd/j.(m/d).

For a proof of this result, we refer to [1].
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