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LINEAR DIFFERENTIAL EQUATIONS
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Abstract. Distribution of zeros of extremal solutions of linear

nth-order differential equations is discussed. Existence and non-

existence of extremal solutions with certain zero distributions are

established. For instance, it is proved that every extremal solution

for [a, fh(a)] of the equation/"1 + p^y'"-" + • • ■ + p0y = 0 has

a zero of order 2 at >?i(a) and has no more than n — 2 zeros on

[a, ^(a)) if pt£ 0,i - 0,1, • • •, n - 2.

1. Introduction.   We shall consider the nth-order differential equation

(Li) y<n) + /W"11 + ■ ■ ■ + Poy = o,

where p0, px, • • •, pn_x are real-valued functions which are continuous

on an interval I. A solution y of (1.1) is said to have a zero of order k at

£ if y(0 = y'(0 = • ■ • = y**^(Q = 0; if further >-<*>(£) ?£ 0, we say
that y has a zero of order exactly k at £. The first conjugate point ryx(a)

of a point a 6 I is the smallest number ß > a, ß e I, such that there exists

a nontrivial solution of (1.1) which vanishes at a and has n zeros (where

the zeros are counted with their multiplicities) on [a, ß]. A nontrivial

solution of (1.1) which has n zeros on [a, ^(a)] is called an extremal

solution for the interval [a, ifc(a)]. Equation (1.1) is said to be discon-

jugate on / if rj^a) $ I for all a e /. If (1.1) is not disconjugate on /, it is

well known that ^(a) e / for some a e / and that there is an extremal

solution of (1.1) for [a, rj^a)] which does not vanish on (a, J7x(a)) [14].

A nontrivial solution of (1.1) is said to have an ix — it — • ■ • — im

distribution of zeros on / if it has a zero of order ik at xk e I, xx < x2 <

• • • < xm. k = 1, 2, • • • , m.

Suppose that the third-order equation

(1-2) y" + p2y" + Pi/ + p0y = o

has a nontrivial solution with three zeros on /. Then it is well known that

(1.2) has a solution with a 1-2 or 2-1 distribution of zeros on / [2], [3], [4].

Results of a similar nature for the fourth-order equation have been
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obtained by Aliev [1] and Peterson [11]. Distribution of zeros of solutions

of nth-order linear differential equations has been studied by Hartman

[5], Sherman [14], [15], and others [7], [10], [12]. For a more

complete review of related results, see [4], [9].

Disconjugacy is intimately connected with various aspects of the

qualitative theory of (1.1). For example, disconjugacy implies the existence

of a Polya-Mammana expansion, which in turn establishes certain integral

inequalities. However, a closer examination reveals that the disconjugacy

is not necessary; the nonexistence of solutions with certain zero distri-

bution suffices to establish the integral inequalities. This is but one example

of what makes meaningful the study of zero distributions.

In this paper we shall be concerned with the distribution of zeros of

extremal solutions of (1.1).

In §2 we establish results concerning the existence of extremal solutions

with certain zero distributions. For instance, we prove: If (1.1) has an

extremal solution with an z\ — i2 — ■ ■ ■ — — 1 distribution of zeros,

then it also has an extremal solution with a jx — j2 — • • ■ — jm_x — 1

distribution of zeros if i\ ^./i-

In §3 we deduce sufficient conditions for nonexistence of extremal

solutions with certain zero distributions. These conditions are given in

terms of inequalities imposed on the coefficients of (1.1).

2. Distribution of zeros.

solutions of (1.1). Define

w(x; x[ki\ x\?*\

Let Vi, j2, • • •, yn be n linearly independent

(2.1)

yi(x)

>'l(x,)

v2(*i)

y.(x„)

yn(x)

yn(xi)

y'nixd

y«(x2)

yn(Xp)

v„ and their

i yi   (Xp) yt (-V

1 g p ^ II - 1, kt + k, + • • • + k, mm n - 1.

From (2.1) and the continuous dependence of yx, y2, ■

derivatives on xx, x2, • • • , x„, we easily obtain the following lemma:

Lemma 2.1. For fixed xit t — 1, 2, • • ■ , p, w(x) = w(x; x[kl], • • • , x1^)

is a solution of (1.1) with a zero of order k( at x(, i »■ 1, 2, • • • , p. Moreover,
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it is a continuous function of xly- • • , xp on I, i.e., for a given e > 0 there

exists a d = d(xl, • • ■ , x„) > 0 such that

|w(x; x[*\       x<*']) - w(x; $JM • • • , < e,

xe[a, t]c/,J-a< oo, provided       |Jf< — f,l < <5.

Theorem 2.1. Suppose that (1.1) new an extremal solution U /or

[a, ^(a)] w/'rA an /\ — /2 — • • • —/, distribution of zeros, it + /t + • • • +

/, = n. If U naj a zero of order exactly imat xm, 2 ^ m _ / — 1, fnen (1.1)

has an extremal solution for [a, »^(a)] >rz7n an /\ — • • • — /m_x —

(;'m — 1) — im+1 — ••• — /, distribution of zeros and an additional zero

at an arbitrary point | S [a, ^(a)].

Proof. Since 2 _ m ^ / — 1, we may assume / ^ 3. By the hy-

potheses, we have V(xk) = y'(xk) = ■■■ = V(i^l)(xk) =0, k = 1, 2,

•••,/, and ^'"'(jtj 5^ 0, a = xt < x, < ■ ■ ■ < x, = >?1(a). Consider

the function

vv(x) = vv(x; x\ l\ • • •, x^j1"1, x^,m  \ xj,"i^,      , x[; ')

denned in (2.1). The existence of V requires vt<,m_1>(xm) = 0. Therefore,

w is an extremal solution of (1.1) for [a, rn(a)] with an it — i9 — • • • — jj

distribution of zeros, unless it vanishes identically. We assert that either

w vanishes identically or w ^ 0, wUm\xm) = 0. For proof assume the

contrary: w ^ 0 and iv('m>(xm) ̂ 0. Then w is an extremal solution with

an ii — ig —• — — /; distribution of zeros. Moreover, w has a zero of

order exactly im at xm. Hence, there exists a d > 0 such that

wa(x) _ w(x; x[h\       xlJX* xS-11, x£?,], • • ■, (x« - o)["])

is a nontrivial solution satisfying

(2.2) |u'(x) - ws(x)\ <€,      xe [a, ^(x)],

for a given e > 0 by Lemma 2.1. Evidently, this solution has the following

n — 1 zeros on [x, ^(x) — d]: a zero of order 4 at x*, k = 1, • • • , m — 1,

m + 1, •••,/— 1, a zero of order ;m — 1 at xm, and a zero of order i,

at x; — o. Furthermore, for an arbitrarily small ex > 0, there exists ws

such that either Wgm~v(x^) = 0orw4(£) = 0 for some point £, |£ — xm| <

e^. This follows from (2.2) for a sufficiently small e, since the zeros can

disappear only in pairs. In either case, wö would have n zeros on

[a, rjj(a) — d], d > 0, contrary to the definition of nt(a). This contra-

diction proves the assertion that either w s 0, or w ^ 0 and w{'m\xm) =

0. Suppose first that w a 0. In this case, w(£) = 0 for every f e [x, r^fx)].

However, this is a sufficient condition for the existence of a nontrivial

solution of (1.1) with a zero at f, a zero of order ik at xk, k = 1, ■ • • ,
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m — 1, m + 1. • • • , /, and a zero of order im — 1 at xM. When £ coincides

with one of the zeros, say, f = xQ, I ^q ^ I, a similar result follows

from h>(,«,(£) = 0. Finally, we consider the case w p£ 0, MMm)(xm) — 0.

Since y"m)(xm) 0, U and vv are two linearly independent extremal

solutions with a zero of order ik at jc*, = I, 2, • • •, /. Hence, there

exists a nontrivia! linear combination of D and iv with a zero at an arbitrary

point f and a zero of order ik at xk, k = 1,2, • • • , /. This completes the

proof.

If (1.1) has an extremal solution u with an ix — it — • • • —      — 1

distribution of zeros, ix + iz + • • • + it_x = n — 1, then

afoj = u'(xk) = • • • = ««»-»(xj = 0, # 0,

/c = 1, 2, ■ • • , / — 1. Consequently, by a repeated application of Theorem

2.1, we obtain the following results.

Theorem 2.2.   Suppose (1.1) has an extremal solution for [a, »/i(a)]

with an ix — it — • • • —      — 1 distribution of zeros, ix + ij + • • • +

— n — 1. Ler      _/2, • • • ,ym_i, 2 ^ m ^ n, be arbitrary positive

integers such thatj\ +jt + • • ■ +jm_i = n — 1, anrf /W f„, f„ • • •, fm_!

6e arbitrary distinct points on (a, »^(a)). //"/, (1.1) has an extremal

solution for [a, >7,(a)] vt /n'c/? «6?^ a zero of order exactly j\ at a, a zero of

order exactly jk at £k, k ■= 2, 3, • • •, m — 1, ant/ a zero a/ ??i(a).

We now easily deduce the following statements from Theorems 2.1

and 2.2.

Theorem 2.3. Suppose (1.1) has an extremal solution for [a, rj^a.)] with

an i, — z'2 — • ■ • — /,_! — 1 distribution of zeros, ij + /»+•"• + 'j-i =

n — 1. /or any integer m, 2 i« Ig n — 1, /er h2, ■ • • , hm_x be

arbitrary positive integers such that /i, + A„ + • • ■ -f Am_i = n — 2,

and let f2, £<,,-••, fm_j oe arbitrary distinct points on (a, ^(a))- If

'i = (1.1) has an extremal solution for [a, *}t(a)] vt-A/cA Acs a zero of

order hx at a, a zero of order hk at £k, k = 2, 3, • • • , m — 1, and a double

zero at »^(a).

Next we consider an extremal solution y with a 1 — is — • • • — i,

distribution of zeros. According to a result of Sherman [14], the first

conjugate point r)j(y.) is a strictly increasing function of x. It follows from

this that y{xk) = y'(xt) = • ■ ■ = y(,k~v(xk) = 0. yUt)(xk) 5*0. k = 2,

3, • • • , /. Therefore, in this case we have results similar to Theorems

2.1, 2.2, and 2.3, which we state in the following theorem.

Theorem 2.4. Suppose (1.1) has an extremal solution for [a, rj^x)]

with a 1 — /t — • • • — i, distribution of zeros, i\ + i3 + • • • + t\ = n — I.
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Let j2,j3, • • ■ ,jm, 2 ^ m ^ n, be arbitrary positive integers such that

Ji + h + '"" + )m — n ~ I j and let f 2. " " ' . f m-i oe arbitrary distinct

points on (a, ^(a)). ///j ^ ym, (1.1) naj an extremal solution for [a, r/,(a)]

H'A/'cn has a zero at a, a zero of order exactly jk at £k, k = 2, 3, • ■ • , m — 1,

and a zero of order exactly jm at »h(a).

Similarly, if h2, h3, • • ■ , hr, 2 5= r _• n — 1, are arbitrary positive

integers such that h2 + h3 + • • ■ + hr = n — 2 ant/ f, ^ nr, /nen (1.1)

has an extremal solution for [a, ^(a)] with a 2 — h2 — • • • — hT distri-

bution of zeros. The zeros occur at the prescribed points on (a, »h(a)).

Our next result is concerned with the existence of an extremal solution

with simple zeros on (a, Jjt(a)).

Theorem 2.5. Suppose (1.1) has an extremal solution for [a, ^(a)] with

an ix — i2 — • • ■ — it distribution of zeros, ix + i2 + ' ' ' + lj = n,. Then

(1.1) has an extremal solution V for [a, ^(oc)] such that

(i) every zero o/U on (a, rji(a)) w simple,

(ii) U /iaj ar /eajr /fa + • • • + it-i distinct zeros on (a, ^(a)).

Proof. We shall first show that there exists an extremal solution

which has at least i2 + • ■ ■ + it_x distinct zeros on (a, ^(a)). LcU yl be

an extremal solution with an ix — it — • • • — r, distribution of zeros.

Then yx has at least 1—2 distinct zeros on (a, »h(a)). Without loss of

generality, we may assume that y\ has a zero of order exactly ik at

xke(<x, fh(at)), k = 2, 3, 1. If 4 = 1, Jfc = 2, 3, ■••,/- 1,
there is nothing to prove. Hence, we shall assume /„ 2 for some p,

2 / — 1. Then, by Theorem 2.1, (1.1) has an extremal solution y2

with an ii — • • • — — (/„ — 1) — iv+l — •■• — /, distribution of

zeros, and an additional zero at a point £e [a, »ji(a)], $ xk, k = \ ,

2, ■ ■ ■ , I. Clearly, y2 has at least / — 1 distinct zeros on (a, »h(a)). A

successive application of the above argument will establish the existence of

an extremal solution which has at least /t + ••■■• + 4-i distinct zeros on

(a, ^i(a)). Let U be an extremal solution which has the largest number

N of distinct zeros on (a, r;x(a)), n — 2>/V-£/j+,-, + All the

zeros of TJ on (a, >j1(a)) must be simple; otherwise, we can repeat the

previous argument and establish the existence of an extremal solution

with at least N + 1 distinct zeros on (a, ^(a)), contrary to the choice of/V.

3. Sufficient conditions. There are known conditions under which (1.1)

has no nontrivial solution with an (n — 1) — 1 or 1 — (n — 1) distri-

bution of zeros. No nontrivial solution of (1.1) has an (n — 1) — 1

distribution of zeros ifp( _ 0, / = 0, 1, • • • , n — 1 [61, [13]. On the other
hand, if (—l)n~*pi _ 0, /' = 0, 1, • • • , n — 1. then no nontrivial solution

of (1.1) has a 1 — (n — 1) distribution of zeros [13]. We can improve
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these results by noting that the conditions on pn_x may be dropped.

Equation (1.1) can first be multiplied by exp {J pn_x dx] to get

to which the proofs given in [6], [13] can be applied.

From these results and Theorem 2.2, we obtain the following statements.

Theorem 3.1. If p^O, i = 0, 1, ••-,« — 2, then every extremal

solution q/" (1.1) for [a, ^i(a)] has a zero of order 2 at »?i(a) and has no mere

than n — 2 zeros on [a, rj^x)). Similarly, if{—l)*""*/»< = 0, / = 0, 1, • • • ,

n — 2, then every extremal solution of (1.1) for [a, ^(a)] has a zero of

order 2 at a and has no more than n — 2 zeros on (a, »/^(a)].

According to a result of Leighton and Nehari [8], the selfadjoint

equation

(3.1)        (ry")"-py = 0,     r > 0, p > 0, r e C",p e C,

has an extremal solution for [a, Jji(a)] which does not vanish on (a, r/j(a))

and which has zeros of order exactly 2 at a and »h(a)> provided that (3.1)

has a nontrivial solution which vanishes at a and which has at least four

zeros on [a, co). In this connection we make the following observation.

If p0 ^ 0, p2 Is 0, and p3 are continuous on an interval /, every extremal

solution for [a, »?i(a)] <=■ I of

has zeros of order exactly 2 at a and ??,(a),and does not vanish on (a, »h(a)).

This is immediate from Theorem 3.1.
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