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A NECESSARY AND SUFFICIENT CONDITION

FOR ßX\X TO BE AN INDECOMPOSABLE
CONTINUUM

r. f. diokman, jr.

Abstract. In his dissertation, David Bellamy has shown that

if /=[0, 1), then ßl 1 is an indecomposable continuum, and R. G.

Woods, in his dissertation, obtained the same result and in addition

showed that for m>!, ßRm\Rm is a decomposable continuum. In

this note we give a necessary and sufficient condition for ßX\X to

be an indecomposable continuum when X is a locally connected

generalized continuum.

Definitions and notation. If F is a topological space and A^B^ Y,

we denote the closure of A in B by c\BA and we say that a set A^B is

conditionally compact in B if dBA is compact. A ray in Fis a closed subset

R of Fthat is homeomorphic to [0, 1). We say that a connected space F

has the strong complementation property provided whenever U is a non-

condiiionally compact connected open subset of F, Y\U is compact. A

compact connected Hausdorff space F is said to be an indecomposable

continuum if there does not exist two nonempty closed, connected proper

subsets of F whose union is F. By a generalized continuum we will mean a

locally compact, connected metric space. We will use ßX to denote the

Stone-tech compactification of a completely regular Hausdorff space.

All terms not defined here may be found in [6], [7] or [8].

We need the following results:

Lemma 1 [7, Theorem 3.41], Let Y be a compact, connected Hausdorff

space and C be a nonempty, closed and connected proper subset of Y. If C

has a nonempty interior, Y is not an indecomposable continuum.

Lemma 2. Let X be a noncompact, locally connected generalized con-

tinuum. Then X contains a ray.

Proof. Let Xx denote the one-point compactification of X. It is well

known that Xx is a locally connected, compact connected metric space and

as such is arcwise connected. Let aeX and let / be any arc in Xx from a to

{co}. Then /\{oo) is a ray in X.
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Lemma 3. Let X be a noncompact, locally connected generalized con-

tinuum. Then X has the strong complementation property if and only if for

every ray R in X, X\R is conditionally compact.

Proof of the necessity. Let R be a ray in X and suppose that X\R

is not conditionally compact. Then there exists a closed set A of X such

that A is not compact and Ar\R=0. Since X is locally connected there

exists an open connected set U of X containing R such that Ar\U=0.

But then neither clXU or X\U is compact and so X cannot have the strong

complementation property. This completes the proof of the necessity.

Proof of the sufficiency. Suppose that for every ray R in X, X\R is

conditionally compact. Let U be any nonconditionally compact open

c connected subset of X. By Lemma 2. A'contains a ray and so there exists

a homeomorphism of h of [0, 1) onto a closed set S of X. Since c\x(X\S)

is compact there exists a point re[0, 1) such that h{t) is the last point on 5

that lies in <AX(X\S). Then h(t, 1) is an open subset of X. We assert that

there exists se[t, 1) such that h[s, 1)<=£/. First we note that for every

se[t, 1), h[s, l)nt/?£0 for otherwise, since X\h[s, 1) is conditionally

compact, U would be conditionally compact. Now suppose that for every

se[t, 1), h[s, 1) is not a subset of U. Then there exists pe(t, 1) such that

h(p)$U and both of the sets h[t,p) and h(p, 1) intersect U. Now L\ =

UC\(X\h[p, 1)) is open in X since h[p, 1) is closed and U.2=Ur\h(p, 1) is

open in X since h(p, 1) is open in X. Furthermore, neither t/, or U2 is

empty and <7= C/,u CA. Of course, this contradicts the assumption that U

is connected and so there exists se[t, 1) such that h[s, l)c U. Then X\U

is a subset of X\h[s, 1) and so X\U is compact. This completes the proof.

Theorem. Let X be a noncompact locally connected generalized con-

tinuum. Then a necessary and sufficient condition for ßX\X to be an inde-

composable continuum is that X have the strong complementation property.

Proof of the sufficiency. Suppose that X has the strong comple-

mentation property. Let R be any ray in X and let T=c]ßxR. By D.

Bellamy's result, ßR\R is an indecomposable continuum and by Theorem

7 of [4], the identity mapping on R can be extended to a homeomorphism

of T onto ßR. Thus, C=T\R is an indecomposable continuum that lies

in ßX\X. But by Lemma 3, c\x(X\R) is compact so that ßX\X=C and

ßX\X is an indecomposable continuum.

Proof of the necessity. Suppose that X does not have the strong

complementation property. By Lemma 2, there exists a ray R in X such

that clA-(A"\/?) is not compact. Then there exists a noncompact closed

subset A of X such that AnR= 2} and a connected open subset U of X

such that äc U and clxUr\A = 0. Now since X is locally compact and
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separable X=\J Kf, i—l, 2, • • • , where for each 1, Ki is a compact

subset of the interior of Kj+1. Let Rj, R2, • • • be a sequence of subrays of R

such that for each /_t 1, R( is a subset of X\Kt. Finally for each i*> 1 let Gt

be the component of Un(X\K,) that contains Rt and let Ht**(X\Kt)r\

(X\Gi). WesetG'=n cl,xGt, ;=1, 2, • • • ,and# = n dßxHlti-l, 2, ■ ■ ■ ,
and note that ßX\X=H\jG. Furthermore, we observe that G is a non-

empty compact, connected space. Now if ßX\X'\s not connected, it cannot

be an indecomposable continuum so suppose that ßX\X is connected. We

now proceed to show that G is a proper subset of ßX\X and that G has

a nonempty interior. Let aec\ßxAr\{ßX\X). Note that such a point exists

since A is not compact. Then since X is a normal space, /I and clA-(7 are

completely separated in X and by Theorem (6.5) of [6], A and dxU have

disjoint closures in ßX. Then aidßXU^>G and so G^ßX\X. Similarly if

reciß^^ißX'xX), r$c\ßXHx^> Hand so G has a nonempty interior relative

to ßX\X. By Lemma 1, ßX\X is not an indecomposable continuum and this

completes the proof.

Corollary. Let X be a noncompact locally connected generalized

continuum. If ßX\X is an indecomposable continuum, then Xx, the one-point

compactification of X, is the only locally connected compactification of X.

Proof. Suppose that F is a locally connected compactification of X

and Y\X is nondegenerate. Then there exists disjoint arcs and I2 in F

such that /.nfytf) is a single point c„ ml, 2. Then if i?,.=/,:\{at}, ;=1,

2, Rx is a ray in X with X\RX nonconditionally compact. By Lemma 3, X

does not have the strong complementation property and hence ßX\X

cannot be an indecomposable continuum. Of course, this implies that X^

is the only locally connected compactification of X.

Example. Let F„= [0, 1) and for each positive integer n let Tn be the

closed line segment joining the points (n—l/n, 1) and (n—l/n, 0) in E2.

Let X= U Tj, i—0, 1, 2, • • • . Then X is a locally connected generalized

continuum that does not have the strong complementation and so ßX\X

is not indecomposable. However, Xx is the only locally connected

compactification of X.

Remark. A connected space F is said to have the complementation

property if for every compact set K in Y, Y\K has at most one non-

conditionally compact component It can be shown that if X is a locally

connected generalized continuum, then X has the complementation if

and only if ßX\X is connected. Then by the theorem above, X has the

complementation property whenever it has the strong complementation

property. See [2] or [3] for further properties of spaces with the

complementation property.
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