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ON SPACES WITH NORMS OF NEGATIVE
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Abstract. The two Hilbert spaces H„ and H, are defined to be

a generating pair if H, is a dense subspace of H0 and if the norm

of an element in is greater than or equal to the norm in i/0.It

is shown that the pair generates a sequence of spaces {Hk}, — oo <

£<oc, such that any two spaces of the sequence form again a

generating pair. Such a pair is shown to generate, in turn, a sub-

sequence of {fit}. Also, representation theorems are derived for

bounded linear functional over the spaces of the sequence {Ht},

generalizing the Lax representation theorem and the Lax-Milgram

theorem.

1. Introduction. We consider two Hilbert spaces, H0 with norm || ||9

and inner product ( , )„, and Hx with norm j| \\r and inner product ( , )x,

having the following properties. H1, as a vector space, is isomorphic to a

subspace H1 of H0: H1 is dense in H0; if x0eH1 corresponds to x1eH1 then

ll*ollo^ll*illi.
We shall identify the spaces H1 and Hx but will consider their elements

equipped with two sets of norms and inner products. Hence we have for

xeH, that

(i) MI«, ̂ Mv

The spaces Hn and Hlt with the above properties, will be called a

generating pair. Hx is the stronger and H0 the w eaker space of the pair.

In §2 we construct from the generating pair a sequence of Hilbert spaces

{Hk}, — co</c< oc, such that any two spaces Hk and Hk. k1<k2, form a

generating pair with Hki the weaker and Hk the stronger space. In [3] Lax

considers the space G of square integrable functions and the space G(r)

of functions with square integrable derivatives up to order r. G and G(r)

form, in our notation, a generating pair. Lax constructs the space G{~T),
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the space of functions with norms of negative order. These spaces play an

important role in existence and regularity theorems in partial differential

equations. For further details regarding these negative norms, see

Schechter [6] and Yosida [7]. In [1] Landesman constructs, in a generalized

way, spaces that correspond to the negatively normed spaces of Lax, and

analyzes their properties.

The main results are in §3 where we show that the sequence of {Hk} is

closed in the following sense. Any two spaces of the sequence generate a

subsequence of {Hk}. We also derive representation theorems for bounded

linear functionals over the spaces of the sequence {Hk}, which generalize

the Lax representation theorem [3] and the Lax-Milgram theorem [4];

see also Landesman [2].

2. Generated spaces. For fixed xeH0 we consider the linear functional

over Hx, g(y)=(y, x)0, yeHx. Then

(2) \g(y)\ = \(y, x)0\ ̂  lx|a \\y\U ̂  \\x\\0 ly}v

Hence g(y) is a bounded linear functional over Hx. It follows from the

Riesz representation theorem that there exists a unique zeHx such that

(3) g(y) = (y, x)0 = (y, z\.

We define the negative norm of x by

(4) ||x!U = uiv

To justify this designation of a norm we have to show that if x0eH0 with

||x0||_1=0 then x0=0. Indeed, ||jc0||_1=0 implies (y, x0)0=0 for all yeHx.

Since Hx is dense in H0 it follows that ||x0||0=0 and x0—0.

H_x is the space obtained by completion under the negative norm (4) of

the elements of H0. H_x is isometricaily isomorphic to a closed subspace,

say Hx, of Hx. We show that ftx exhausts all of Hx.

Lemma 1.   /?, = //,.

Proof. Let y0eHx be orthogonal to ft,. Then (j'0, z)x=0 for all zeßx

Therefore (y0, x)0=0 for all xeH0 and in particular forya. Hence ||_y0ilo=0-

Since Hx, as a vector space, is a subspace of H0 we conclude that also

||_y0!l1=0. This implies that HX = HX.

The inner product for elements wx, w'2 in H_x is defined by

(5) {wx, w2)^x = (yx,yz\

where yx, y« are the elements in Hx corresponding respectively to wx, w2,

in the preceding isometric isomorphism between Hx and H_v This com-

pletes the construction of H_x as a Hilbert space.

Definition.   H_x is defined as the lower space generated by H0 and Hx.
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Symbolically this will be denoted by

(6) H_, = H^HV

It follows from (3) that \fxsHn,yeH1 then |(y, x)0|<||_y||, M_i. Hence

the inner product in H0 can be extended boundedly to yeHx and weH_x,

such that (y, n)0 satisfies the generalized Schwarz inequality

(7) IO'.wWSWiM^

Furthermore, if wlt w^sH^ correspond respectively to ylt yteHlt then

(8) w2)_i = Oi, M'a)o = 0'i,>'s)i.

From (8) follow the dual relationships for weH^i and yeHu

(9) INU« sup Kr.wW/i n,

and

(10) Wi = supio, »Ool/WII-i.
ITeff.,

Lemma 2.  //xeH0 then ||x||_j ^ |jjc||0.

Proof. If zeHL corresponds to x as an element in H_x, then ||x||ixs«

(x,xU=(z,x),gMt flx||e<||z|li lx|,-|*U ||x||0. Hence M_i£M..
Since H0 is dense in H_x it follows from Lemma 2 that H_x and H0 form

a generating pair. They generate the lowei space which we denote by H_2,

in the same way that is generated from H0 and Hx. Therefore H_2=

H_xjHa. Successively we now construct the spaces H_2, H_3, H_t, • • ■ ,

such that H_k, k>0, is the lower space generated by H_k+1 and H_k+2;

i.e. H_k=H_k+JH_k+2.
Next we construct from H0 and Hx the space H2 as follows. H2 is the

subspace of Hx for whose elements z there exist corresponding elements

xe#0 such that, for all ysHu

(11) (z,y)L= (x,y)0.

Since (11) can be satisfied for any xeH0, it follows that the correspondence

between zeH2 and xeH0 is a mapping from H2 onto H0. Furthermore

x=0 if and only if z=0 and therefore this is a one-to-one mapping.

The norm and inner product in H2 are defined by

(12) ||z||2 = ||x||0   and   (Zj, z2)2 = (xu x2)0,

where z, zx, z2e/Y2 correspond respectively to x, xu x2eH0.

It follows from (12) that the correspondence between //0and tf2isan

isometric isomorphism.

H2 is dense in Hv This follows from the fact that if yeH1 is orthogonal
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in Hx to the elements of H2, then (11) implies that (x,y)0—0 for all

xeH0. Hence !|_y||o=0 and therefore Hj^l!x=0.

Lemma 3.  lfzeH2 then ||r|[1=il|z]|2.

Proof.   If xsH0 corresponds to zeH., then it follows from (11) that

MM*.*W*,4>£II*UIz|«£MIoMi. Hence Hzll^lxlo-llzL.
Definition. H2 is defined as the upper space generated by H0 and Hv

Symbolically this will be denoted by

(13) H2 - HJH0.

Since H2 is dense in Hx it follows from Lemma 3 that Hx and H2 form a

generating pair. We generate therefore successively the spaces H2, H3,

H4, • • •. Hk+2 is the upper space generated by Hk and Hk+1. Hence Hk+2=

Hk+JHk, k>0.
To complete the construction of all the generated spaces we will show

that the processes of generating lower spaces and upper spaces are reciprocal

to each other. We do this by showing that Hx is the upper space generated

by H_x and H0, and that H0 is the lower space generated by Hx and H2.

Lemma 4. H^HJH^.

Proof. Denote HJH^ by H'x. Then it is to be shown that H[=HV

If yeH'L corresponds to weH_x in the isometric isomorphism between H_x

and H[, then (w, x)_x=(y, x)0 for all xeHa. Let W, XeHx correspond

respectively to w and x as elements in //_,, in the isometric isomorphism

between Hx and H_v Then (w, x)_x=(W, X\—{W, x\. Hence y= Wand

therefore yeHv Also, y as an element both in H.± and H[ corresponds to

the same element weH_v Conversely if yeH^ then for all xeH0, (y, x)0=

(y, .Y)1=(vv, x)_x and therefore yeH[. It follows that HX=H[ which con-

cludes the proof.

Lemma 5. //0=/f,///2.

Proof. Denote HJH2 by H'ü. If yeHx, then for all zeH2, (z, y\ =

(z, Y)2 where YeH2 corresponds to yeH'^ in the isometric isomorphism

between H2 and H'n. Also, (z, y)x=(x, y)0=(z, W)2 where x, yeH0 corre-

spond respectively to z, WeH2 in the isometric isomorphism between H,

and H0. Hence Y= W. Therefore, y as an element in both H'a and H0

corresponds to the same element YeH2. Since Hx is dense in both //„ and

H0, it follows that H'0 = H0.

Summing up the properties of the spaces of the sequence {Hk} we have:

Theorem 1.   For any integer k, — oo<&<oo,

(a) The spaces Hk and Hk+1 form a generating pair, with Hk the weaker

and Hk+l the stronger space.
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(b) H^-HJHm and HM = Hk\Hk_,.
(c) The inner product in Hk can be extended bounded/)- to elements

xe/Vw and zeH^, and (z, x)k satisfies the Schwarz inequality:

(14) K-.x)kl2l-Iml"lft-i-

(d) There exists an isometric isomorphism between <¥t_j and

uniquely determined by the relationships

(15) (xlf Xj)*., = (Zj, x2\. m (Zj, z2)t+1

M'/iere Xi, x2e//t_1 correspond to zlf z2eHk+1.

3. Main theorems. The correspondence of the elements xeN^ and

zeÄjt+j under the isometric isomorphism of Theorem 1 will be denoted by

(16) (x; (z;JVi)-

Now, (16) generates successively an isometric isomorphism between

Hk_m and Hk+m, m>Q, similarly denoted by (z; Hk_J*->(Z; #*+„,),

through the mappings

(17) (z; Hk_m) +-+ (*,; //t_m+2) <-> (z^; #*+«_») «-> (Z; #*+„).

Lemma 6. For integer k and positive integer m, the spaces Hk and

Hk+m form a generating pair with Hk the weaker and Hk+m the stronger space.

Proof. Hk+m, as a linear vector space, is a subspace of Hk. Also,

ll2L= l!zlli-+m f°r z£Hk+m- Hence we only have to show that is dense

in Hk. Consider first Hk+2. Since Hk+1 is dense in Hk and is dense in

Nk+1. it follows that for s>0 and any xeHk there exists ysH^ with

B^-x||t<e, and zeHM with \\z-y\\M<e. Hence |z—xflt< U~yh+
IIJ—;cll*= Hz— jilt+i+ll v—x\\k<2e. Therefore Hk+2 is dense in Hk. It
follows similarly that Hk+m is dense in Hk which completes the proof.

Next we show that two corresponding elements in Hk and Hk+2 are also

corresponding elements in       and Hk+1.

Lemma 7.   //(x; Hk) <-> (z; Hk+2), then (x; /Vfc_,)<->(z; Hk+1).

Proof. Let ZeHk+1 be such that (x; Hk_x)<rMZ; Hk+1). We have to

show that Z=z. For any yeHM let YeH,._2 correspond to y as an element

in Hk, that is (y; Hk)<-r(Y; Hk+2). It follows that (x,y)k=(Z,y)m and

also (x, y)k=(z, Y)k+2={z, y)k+1. Hence (Z, y)k+1 = (z, y)k+1. Therefore

Z=z.

From repeated application of Lemma 7 follows

Lemma 8.   If (x; Hk)<->(z; Hk+2), then

(x; //t_r) <-»■ (z; Hk_r+2)for r > 0.
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Lemma 9. If xeHk+r, r>0, and (x; Hkh-*(z; Hk+2), then zeHk+r+2 and

(x; Hk+T)+-+(z; Hk+r+2).

Proof. Let ZeHk+r+2 be such that (x; Hk+T)*-+(Z; Hk+r+2), then it

follows from Lemma 8 that (x; £f\.)<->(Z; H^). Hence Z=z which com-

pletes the proof.

Following Lemma 6, Hk and Hk+m, m>0, form a generating pair. We

have therefore the lower space HkjHk+m and the upper space Hk+JHk. We

now have the following result:

Theorem 2. HkIHk+m=Hk_m.

Proof. Denote HkjHk+m=Hk^m. Then it is to be shown that Hk_m=

Hk_m. Let xeHk. Then there exists yeHk+m such that

(18) {x, w\ = (y, w)k+m   for all weH^.

It follows from the definition of Hk_m that (x; Hk_m)<->(y; Hk+m). We shall

show that also (x; Hk_m)*-+(y; Hk+m). There exist

xi e Hk+i> x2 e tIk+2, ■ • • , xm_i e //i+m_1, xm e Hk+m

such that

(X, W)k = (Xt, W)k+1 = (X2, w)k+2 = • • • = (.Vm_1; M')i+m_i - (X„, W)w.m

for all weHk+m. It follows from (18) that xm=y. Therefore

(y, Hk+m) <->• (xm_,; Hk+m_2)   and   (x^; #*+„,_,) +-> (xm_2; Hk+m_3).

Hence from Lemma 7 (x^; Wic+m_2)«->(xni_2; Hk+m_4) and therefore

Cy; #*+m)<-*(*«-2; ^k+m-*)- Next, (xm_2; //i+m_2)<->(xm_3; //t+m_4) and

hence (xm_2;//^m_4)<->(xm_3;//i+m_6) and therefore (y; Hk+m)*-+

(xm_3; Hk+m-d- Successively it follows that (y; Hk+m)<^>(x; Hk_J.

Hence the elements of Hk as a subspace of H'k_m are identical to these

elements as a subspace of Hk_m. Since the elements of Hk are dense in

H'k-m by definition, and are dense in Hk_m by Lemma 6, it follows that

Corollary 2.1. H^JH^H^.

Proof.  Since Theorem 2 implies that Hk+JHk+2m=Hk, it follows from

Lemma 4 that Hk+JHk=Hk+2m.

The following corollaries are an immediate consequence of Theorem 2.

Corollary 2.2. Hk and Hk+m generate the sequence {Hk+sm}, — oo <

s< oo.

Corollary 2.3.   The inner product in Hk can be extended boundedly to
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elements xeHk_m and zeHk+m such that

(19) (.Xj, x3)t_m = (z,, x2)k = (zx, Z2)k+m

where (x,; Hk_m)^{2l; Hk+J and (x2; Hk_m)^+(z2; Hk+m).

We now derive two generalized representation theorems.

Theorem 3 (Lax Representation Theorem). For any integer k and

positive integer m, all bounded linear functionals g(z) over Hk+m are uniquely

represented by

(20) g(z) = (*> xt)k,     xg e Hk_m,

and all bounded linear functionals h(x) over Hk_m are uniquely represented by

(21) h(x) = conj(zÄ, x)k,     zh e

Proof. By the Riesz representation theorem g(z)—(z, zg)k+m with

zgeHk+m uniquely determined. It follows from Corollary 2.3 that g(z)=

(z, xg)k where (xg; Hk_m)<r^(zg; Hk+m), and xg is uniquely determined in

Hk-m- The representation h(x) = (zh, x)k is similarly established.

Theorem 4 (Generalized Lax-Milgram Theorem). Let B(z, x) be a

form defined for all elements zeHk+m, xeHk_m, which is linear in z, anti-

linear in x, and satisfies \B(z, x)|^A/[|z;]fc+OT||x|ji_m for some constant M.

Suppose that for some positive constant c, all pairs z0, x0, such that

(-0; Hk+my^(x0; Hk_J, satisfy \B(z0, x0)|=cHz0||2+m=c||x0|lt_m. 77ze«

every bounded linearfunctional G(z) over Hk+m admits a unique representation

G(z)=B(z, xG), xaeHk_m, and every bounded linear functional F(x) over

Hk_m admits a unique representation F(x)=conj B(zF, x), ZjreHk+m.

Proof. We adapt the method of the proof of the Lax-Milgram

theorem (see for example Nirenberg [5]) to the present circumstances. For

fixed xeHk_m, B(z, x) is a bounded linear functional over Hk+m. Hence by

Theorem 3 there exists a unique ueHm_k such that B(z, x) = (z, u)k. This

defines a linear mapping u=stfx from Hk_m into itself. We substitute v for

z, where (v; Hk+m)+^(x; Hk_J. This implies that c\\x\\l_m^\B(v, x)| =

\(v,u)k\<\\v\\k+m\\u\\k_m=\\x\\k_J\u\\k_m. Hence IM^^r"1!»!*-«. It

follows that the operator s/ has a bounded inverse. Therefore the range of

s/ is closed and every element xeHk_m corresponds to a unique u in the

range of s/. To complete the proof it remains to show that the range of

is all of Hk_m. Assume that v0eHk+m is orthogonal to the range of sf,

that is (r0, w)fe=0, for all u in the range. Let x0~Hk_m be such that (x0;

#*-m>->(i>o; Hk+m) and let u0=s/x0. Then 0=\(v0, u0)k\ = \B(v0,x0)\^

cW!ic+m- Hence litfoL+m^O and therefore the zero element is the only

element in Hk+m orthogonal to the range of «j/ (in Hk_,j. It now follows
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from Corollary 2.3 that the range of stf is all of Hk_m. The proof of the

representation of the bounded linear functionals over Hk_m follows by a

similar argument.
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