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ON SPACES WITH NORMS OF NEGATIVE
AND POSITIVE ORDER!

GIDEON PEYSER

ABSTRACT. The two Hilbert spaces H,and H, are defined to be
a generating pair if H, is a dense subspace of H, arc if the norm
of an element in H, is greater than or cqual to the norm in H,.It
is shown that the pair generates a sequence of spaces {H;}, —®© <
k<o, such that any two spaces of the sequence form again a
generating pair. Such a pair is shown to generate, in turn, a sub-
sequence of {H,}. Also, representation theorems are derived for
bounded linear functionals over the spaces of the sequence {H.},
generalizing the Lax representation theorem and the Lax-Milgram
theorem.

1. Introduction. We consider two Hilbert spaces, H, with norm || [,
and inner product ( , ), and H, with norm || |, and inner product ( , ),,
having the foilowing properties. H,, as a vector space, is isomorphic to a
subspace H, of Hy; H, is dense in Hy; if x,e H, corresponds to x,€H, then
lIxollo=llxy ;- R

We shall identify the spaces H,; and H, but will consider their elements
equipped with two sets of norms and inner products. Hence we have for
x€H, that

) lIxllo = llxI;-

The spaces H, and H,, with the above properties, will be called a
generating pair. H, is the stronger and H, the weaker space of the pair.

In §2 we construct from the generating pair a sequence of Hilbert spaces
{Hy}, — <k <c, such that any two spaces H,, and Hy,, k,<k,, form a
generating pair with H, the weaker and H,, the stronger space. In [3] Lax
considers the space G of square integrable functions and the space G'”
of functions with square integrable derivatives up to order r. G and G
form, in our notation, a generating pair. Lax constructs the space G,
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the space of functions with norms of negative order. These spaces play an
important role in existence and regularity theorems in partial differential
equations. For further details regarding these negative norms, see
Schechter [6] and Yosida [7]. In [1] Landesman constructs, in a generalized
way, spaces that correspond to the negatively normed spaces of Lax, and
analyzes their properties.

The main results are in §3 where we show that the sequence of {H,} is
closed in the following sense. Any two spaces of the sequence generate a
subsequence of {H;}. We also derive representation theorems for bounded
linear functionals over the spaces of the sequence {H,}, which generalize
the Lax representation theorem [3] and the Lax-Milgram theorem [4];
see also Landesman [2].

2. Generated spaces. For fixed xe H, we consider the linear functional
over H, g(y)=(y, X)y, yeH,. Then
2 g =1y, Xl = llxlo llylle = lxllo iy

Hence g(y) is a bounded linear functional over H,. It follows from the
Riesz representation theorem that there exists a unique zeH, such that

©) g =y, x)o = (3, 2.
We define the negative norm of x by
@ Ixi-1 = llzfl,.

To justify this designation of a norm we have to show that if x,eH, with
[|xoll_y=0 then x,=0. Indeed, ||x,l|_,=0 implies (y, x,),=0 for all yeH,.
Since H, is dense in H, it follows that | x,[,=0 and x,=0.

H_, is the space obtained by completion under the negative norm (4) of
the elements of H,. H_, is isometrically isomorphic to a closed subspace,
say H,, of H,. We show that A, exhausts all of H,.

Lemma 1. H,=H,.

PrOOF. Let y,eH, be orthogonal to H,. Then (y,, z),=0 for all zeH,-
Therefore (y,, x)o=0 for all xeH, and in particular for y,. Hence | y,l,=0.
Since H,, as a vector space, is a subspace of H, we conclude that also
l76ll,=0. This implies that H,=H,.

The inner product for elements w,, w, in H_, is defined by

©) (wy, W)y = (Y1, Jah
where y;, y, are the elements in H, corresponding respectively to w,, w,,
in the preceding isometric isomorphism between H, and H_,. This com-
pletes the construction of H_; as a Hilbert space.

DEeFINITION.  H_, is defined as the lower space generated by H, and H,.
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Symbolically this will be denoted by
(6) H_, = H/H,.

It follows from (3) that if xeH,, yeH, then |(y, x)o| = llyl; I xl|l,. Hence
the inner product in H, can be extended boundedly to yeH, and weH_,,
such that (y, w), satisfies the generalized Schwarz inequality

@) 1, W)l = Iyl iwlloae

Furthermore, if w;, w,eH_; correspond respectively to y;, y,€H,, then

®) (W1, wo)_1 = (y1, Wodo=(Jz, y2h
From (8) follow the dual relationships for weH_; and yeH,,
) Iwl_y = sup {(Y, w)ol/ Yl
YeH,
and
(10) Iyly = sup [(y, W)l/IW]_;.
WeH _,

LEMMA 2. If xeH, then |Ix||_; = lix|l,.

Proor. If zeH, corresponds to x as an element in H_,, then lxl2,=
(%, X).1=(2, x)o= lIzllo Ixllo=lizlly I xllo="Ix]l1 lIxllo. Hence |x}i_y=|x[.

Since H, is dense in H_, it foliows from Lemma 2 that H_; and H, form
a generating pair. They generate the lower space which we denote by H_,,
in the same way that H_, is generated from H, and H,. Therefore H_,=
H_,/H,. Successively we now construct the spaces H_,, H 3, H_;," -,
such that H_,, k>0, is the lower space generated by H_;,, and H_;,;
ie. H ,=H_,.,/H .,

Next we construct from H, and H, the space H, as follows. H, is the
subspace of H, for whose elements z there exist corresponding elements
x€H, such that, for all yeH,,

(11) (2, yh = (x, Yo

Since (11) can be satisfied for any xeH,, it follows that the correspondence

between zeH, and x€H, is a mapping from H, onto H,. Furthermore

x=0 if and only if z=0 and therefore this is a one-to-one mapping.
The norm and inner product in H, are defined by

(12) izl = lixlly and (z;, zg)y = (X1, X2)os

where z, z,, z,€H, correspond respectively to x, x;, x,€H,.

It follows from (12) that the correspondence between H,and H, is an
isometric isomorphism.

H, is dense in H,. This follows from the fact that if yeH, is orthogonal
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in H, to the elements of H,, then (1) implies that (x, y),=0 for all
xeH,. Hence ||y{,=0 and therefore ||y|l;=0.

LeMMA 3. If zeH, then |z|, = ||z]l..

Proor. If xeH, corresponds to zeH, then it follows from (11) that
lzli=(z, 2)1=(x, 2)o=lIxllolzllo= I xllollzll,- Hence {izll; S || xllo=1zl>.

DEFINITION.  H, is defined as the upper space generated by H, and H,.
Symbolically this will be denoted by

(13) H,= Hx/Ho.

Since H, is dense in H, it follows from Lemma 3 that H, and H, form a
generating pair. We generate therefore successively the spaces H,, Hj,
H,, - . H, is the upper space generated by H, and H,,. Hence H, .=
Hyia| Hy, k>0

To complete the construction of all the generated spaces we will show
that the processes of generating lower spaces and upper spaces are reciprocal
to each other. We do this by showing that H, is the upper space generated
by H_, and H,, and that H, is the lower space generated by H, and H,.

LEMMA 4. H1=H0/H_1‘

ProoF. Denote Hyo/H_, by H;. Then it is to be shown that H;=H,.
If yeH1 corresponds to weH_, in the isometric isomorphism between H_,
and Hj, then (w, x)_;=(y, x), for all xeH,. Let W, XeH, correspond
respectively to w and x as elements in H_,, in the isometric isomorphism
between H; and H_,. Then (w, x)_,=(W, X),=(W, x),. Hence y=W and
therefore yeH,. Also, y as an element both in H, and H; corresponds to
the same element weH_,. Conversely if yeH, then for all xeH,, (y, x)y=
(y, X);=(w, x)_, and therefore yeH,. It follows that H,=H; which con-
cludes the proof.

LEMMA 5. H,=H,/H,.

Proor. Denote H,/H, by H,. If yeH,, then for all zeH,, (z, y);=
(z, Y), where YeH, corresponds to yeH; in the isometric isomorphism
between H, and H,. Also, (z, y),=(x, y)y=(z, W), where x, yeH, corre-
spond respectively to z, WEH, in the isometric isomorphism between H,
and H,. Hence Y=W. Therefore, y as an element in both H; and H,
corresponds to the same element YeH,. Since H, is dense in both H, and
H,, it follows that Hy=H,,.

Summing up the properties of the spaces of the sequence {H,.} we have:

THEOREM 1. For any integer k, — 0 <k< wc,
(a) The spaces H, and H,., form a generating pair, with H, the weaker
and H,,, the stronger space.
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(b) H, y=H,/H,,, and Hy,=H,/H,_;.
(c) The inner product in H, can be exiended boundedly to elements
xeH,_, and zeH,_,, and (z, X), satisfies the Schwarz inequality:

(14) 1z, %)l = iizllesr IXlies

(d) There exists an isometric isomorphism between H,_, and H,_,,
uniquely determined by the relationships

15) (x1, Xo)kmy = (21, Xl = (21, Zo)ia
where x,, Xx,€H,_; correspond 10 z,, z,6H;.,.

3. Main theorems. The correspondence of the elements xeH,_, and
zeH, ., under the isometric isomorphism of Theorem 1 will be denoted by

(16) (x; Hy_y) <= (z; Hypy).

Now, (16) generates successively an isometric isomorphism between
H,_,, and H, ,, m>0, similarly denoted by (z; Hy_,,)(Z; Hy\m),
through the mappings

(17) (z; Hip) > (215 Hy_pi2) - (25 Hyim2) & (Z; Hip)-

LeEmMMA 6. For integer k and positive integer m, the spaces H, and
H,. ., form a generating pair with H, the weaker and H,_ ,, thestrongerspace.

PrROOF. H,,,, as a linear vector space, is a subspace of H,. Also,
Izl = lzlls m for zEH,, ,. Hence we only have to show that H;,, is dense
in H,. Consider first H, .. Since H,,, is dense in H, and H,,, is dense in
Hy,,. it follows that for £>0 and any xeH, there exists yeH,,, with
ly—xllx<e, and zeH,,, with |iz—pl;,,<e. Hence z—x|=Zlz—yl,+
ly—xlp=llz=yilin+Ily—xl,<2¢. Therefore H,., is dense in H,. It
follows similarly that H,,,, is dense in H; which completes the proof.

Next we show that two corresponding elements in H, and H,,, are also
corresponding elements in H,_, and H,_,.

LemMMA 7. If (x5 Hy) <> (25 Hyiy), then (x; Hi_y)—(z; Hy,,).

PrOOF. Let ZeH, ., be such that (x; H,_,)«>(Z; H,,,). We have to
show that Z=z. For any yeH,,, let YeH,_, correspond to y as an element
in H,, that is (y; H)<(Y; H,,,). It follows that (x, y),=(Z, y);, and
also (x, y),=(z, Y)eo=(2, )is1- Hence (Z, y)i.1=(2, y)ir1- Therefore
Z=z.

From repeated application of Lemma 7 follows

LemMA 8. If (x; Hy)e>(z2; Hy.,), then
(x5 Hyy) > (25 Hy_ry0) for r > 0.
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LemMA 9. If xeH,,,, r>0, and (x; H)—(z; H,,,), then zeH, ., and
(x; Hip (25 Hyyrio)-

Proor. Let ZeH,.,,. be such that (x; H. )—(Z; H,.,,), then it
follows from Lemma 8 that (x; H)<>(Z; H,.,). Hence Z=z which com-
pletes the proof.

Following Lemma 6, H, and H;,,, m>0, form a generating pair. We
have therefore the lower space H,/H,,,, and the upper space H,, ,/H,. We
now have the following result:

THEOREM 2. H /H\, ,.=H;_,.

Proof. Denote H,/Hy,n=H;_n. Then it is to be shown that H,_,=
H,_,. Let xeH,. Then there exists yeH,,, such that

(18) (x, W) = (¥, Whpm forall weH, .

It follows from the definition of H;_,, that (x; Hy_n)>(y; Hyyr). We shall
show that also (x; H,_,.)=(y; H,,.). There exist

X € Hyprs X2 € Hipgy "0y Xu 1 € Hyy1s X5 € Hiym
such that

(6, W = (X1, Whr = (Xas Whie = *** = (X1 Whtma1 = (Xm: Whietm

for all weH,, .. It follows from (18) that x,=y. Therefore
(s Herm) <> (Xt Hipmes) and  (xXp g5 Hyomo1) <> (X 25 Hypms)-

Hence from Lemma 7 (x,_;; Hyymo)>(Xm_2; Hirm—s) and therefore
(Vs Hoom¥(Xm_25 Hepmos)- Next, (Xp_s; Hym o)X p_3; Hiym—s) and
hence  (Xp_s; Hyom—a)¢>(Xm_3; Hyim_s) and therefore (y; Hyypm)e>
(Xm—35 Hiym—s)- Successively it follows that (y; Hyy)=(x; Hi_p).

Hence the elements of H, as a subspace of H;_,, are identical to these
elements as a subspace of H,_,. Since the elements of H, are dense in
H,_,, by definition, and are dense in H,_, by Lemma 6, it follows that
Hlé—m=Hk—m'

COROLLARY 2.1. H,, . [Hy=H, ..

ProoOF. Since Theorem 2 implies that H,, ./ H, . »,.= H,, it follows from
Lemma 4 that H,_./H,=H, ,,.
The following corollaries are an immediate consequence of Theorem 2.

COROLLARY 2.2. H, and H,,,, generate the sequence {H,, .}, —©0<
s< .

COROLLARY 2.3.  The inner product in H, can be extended boundedly to
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elements xeH,_,, and zeH,,, such that
(19) (X15 Xo)iem = (215 X2 = (215 ZD)iym
where (x1; Hy_,)(2y; Hyyp) and (Xo; Hy_p)>(22; Hyym)-

We now derive two generalized representation theorems.

THEOREM 3 (LAX REPRESENTATION THEOREM). For any integer k and
positive integer m, all bounded linear functionals g(z) over Hy,,, are uniquely
represented by

(20) g(z) = (Z, xg)k’ xg € Hk—m9
and all bounded linear functionals h(x) over H,_,, are uniquely represented by
21 h(x) = conj(z,, x), Z, € Hy o

Proor. By the Riesz representation theorem g(z)=(z, z,)p,,, With
z,€H,,,, uniquely determined. It follows from Corollary 2.3 that g(z)=
(z, xg), Where (x,; H,_,)—(z,; Hy.p), and x, is uniquely determined in
H,_,,. The representation 2(x)=(z,, x); is similarly established.

THEOREM 4 (GENERALIZED LAX-MILGRAM THEOREM). Let B(z, x) be a
form defined for all elements zeH,,,, xEH,_,,, which is linear in z, anti-
linear in x, and satisfies |B(z, x)| SM|\z}ly, n|Xlix_m for some constant M.
Suppose that for some positive constant ¢, all pairs z,, x,, such that
(205 Hypm)>(Xo; Hy_yy), satisfy |B(zo, xo)l;C‘"zoll;i+m=cnxo":—m~ Then
every bounded linear functional G(z) over H,, ,, admits a unique representation
G(2)=B(z, xg), xgeH,_,,, and every bounded linear functional F(x) over
H,_,, admits a unique representation F(x)=conj B(zp, X), zZp€Hy, -

Proor. We adapt the method of the proof of the Lax-Milgram
theorem (see for example Nirenberg [5]) to the present circumstances. For
fixed xeH,_,,, B(z, x) is a bounded linear functional over H,,,. Hence by
Theorem 3 there exists a unique ueH,,_, such that B(z, x)={(z, u);. This
defines a linear mapping u=&/x from H,_,, into itself. We substitute v for
z, where (v; H, ) (x; H,_,). This implies that c|x||i_,S|B(, x)|=
1@, W] SN0l mlltliem= 1 Xl e—mlltll - Hence |ixli_n=culim. It
follows that the operator &/ has a bounded inverse. Therefore the range of
& is closed and every element xeH,_,, corresponds to a unique u in the
range of &/. To complete the proof it remains to show that the range of
& is all of H,_,,. Assume that v,€H, . is orthogonal to the range of &7,
that is (v, u), =0, for all u in the range. Let xo=H,_,, be such that (x,;
Hy_ ) (vo; Hipm) and let uy=x,. Then 0=|(vy, to)el=|B(vo,%o)| =
cllvoli . Hence [lt),.m=0 and therefore the zero element is the only
element in H,_,, orthogonai to the range of & (in H,_,,). It now follows
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from Corollary 2.3 that the range of 7 is all of H,_,,. The proof of the
representation of the bounded linear functionals over H,_,, follows by a
similar argument.
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