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CONVEX FUNCTIONS AND HARMONIC MAPS

WILLIAM B.  GORDON

Abstract. A subset D of a riemannian manifold Y is said to be

convex supporting if every compact subset of D has a F-open

neighborhood which supports a strictly convex function. The image

of a harmonic map f from a compact manifold A" to y cannot be

contained in any convex supporting subset of Y unless /is constant.

Also, if Y has a convex supporting covering space and ir,(.V) is

finite then every harmonic map from A- to y is necessarily constant.

Examples of convex supporting domains and manifolds are given.

1. Notation. X and Y will always denote C°° riemannian manifolds and

it will always be assumed that X is compact. Greek (Latin) letters will be

used for objects attached to X (Y). Local coordinates will be written

x=(x"), y=(y*), and the corresponding metric tensors and Christoffel

symbols will be denoted by g=(gxe), h—Çh^), A}y, T'jk. Indices of tensors

will be raised and lowered in the usual fashion, and we shall always use the

tensor summation convention. If F is a C2 function on Y we write F, for

dF/dyi and Fn for d2F¡dyidy' — Yui}Fk. Fis said to be strictly convex on an

open subset U of F if the Hessian form (F„) is strictly positive at every

point of U. Let f:X->-Y he a C2 map which is locally given by y=y(x).

We set

(1)        * " ¡?;    y« = hFï? ~ A'í>v + r^>>

Then y\ and ylaß transform like tensors under the coordinate transfor-

mations je—»-Jc, y-+y~. We recall that/is said to be harmonic iff

(2) g'ß)'U = 0       (i = 1, 2, • • •, dim(y)).

For motivation and some results in the theory of harmonic maps see [2],

[4], [5]. Equations (2) are the Euler-Lagrange equations for the "energy"

functional E(f)=¡xg*í,hi}y:yi^gdx.

2. A subset A of y will be said to be convex supporting iff every compact

subset of A has a 7-open neighborhood on which there is defined a strictly

convex function F. Note that F need not be globally defined. (Examples of
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convex supporting domains and manifolds are given in §4.) Our main

results are summarized in the following theorem.

Theorem. Let X and Y be C°° riemannian manifolds with X compact

and connected.

(A) The image of any harmonic map f'.X-*- Y cannot be contained in any

convex supporting subset of Y unless f= constant. Hence, any harmonic map

from X to Y is necessarily constant if Y is convex supporting.

(B) If tt^X) is finite (i.e., the universal covering space of X is compact)

and Y has a covering space which is convex supporting with respect to the

lifted metric of Y, then every harmonic map from X to Y is necessarily

constant.

Example. Bishop and O'Neill [1] have recently shown that the

existence of a globally defined convex function on a manifold imposes

strong conditions on the structure of the manifold, especially manifolds of

nonpositive sectional curvature. Among their results, we note the following

two:

(a) A compact manifold cannot be convex supporting.

(b) A complete simply connected manifold M whose riemannian

sectional curvatures are all 5j0 supports a convex function; viz., ifp0 is a

fixed point on M and F(/>)=squared geodesic distance from/>0 top, then F

is strictly convex. Hence the universal covering space of a complete

riemannian manifold with nonpositive sectional curvatures is convex

supporting.

Now according to a well-known theorem of Myers, if the Ricci curvature

form of a manifold Zis strictly positive definite, then A'and its universal

covering space are compact (see e.g. [6, p. 105]). Hence we obtain the

known result that every harmonic map from Xto Fis necessarily constant

if the Ricci curvature of X is positive definite and the riemannian curvatures

of Y are all nonpositive. Note however that this fact does not depend on

the riemannian structure of X. E.g., if the standard metric on Sn (n> 1) is

replaced with an arbitrary metric, it still remains true that every harmonic

map from Sn to a manifold with nonpositive riemannian curvatures is

necessarily constant. (Cf. the corollary on p. 124 of [2].)

3. The proof. Without loss of generality we can assume that X is

orientable, since otherwise we can apply the following arguments to the

orientable cover of X.

For (A), let F be a function which is strictly convex in a neighborhood of

f(X), and let G = Faf. Using the notation of §1, we get GJß=Fiylß+FiJy^yß.

Multiplying by gjß using (2) and integrating we get ) x g*PGxß\'g dx=

Sx g*"?»yly'ß\/s d-x- The left-hand side vanishes because the integrand is
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the Laplacian of G, and, from convexity, the right-hand side can only

vanish if ja=0.
To prove (B) let w.X-^X he a universal covering of X, p: Y—>-Y a

covering for which fis convex supporting with respect to the metric p*h.

Let f:X-+Y be harmonic and set fi=f°^- Then/, is harmonic. But % is

simply connected, so that from general principles (see e.g. [7, p. 76])/*

lifts to a map/2 from A'to ? which satisfies pfi2=fi- Using the fact that the

local inverses of p are isometries it is easy to show that/, is harmonic, and

from (A) it follows that/, and therefore/is constant.

4. Examples and applications, (i) Every point p has a convex supporting

neighborhood. (Proof. For a coordinate system y centered at p, set

F(y)='L(yi)2.) Hence from (A), we can say that the image of a harmonic

map cannot become too small without collapsing to a point.

(ii) A closed geodesic on y is a harmonic map from the circle Sx to Y.

Hence a convex supporting manifold cannot contain a closed geodesic

(cf. [1, p. 5]). Hence in particular, the hyperboloid of revolution x2+y2=

1 +z2 is not convex supporting. However the upper and lower halves of the

hyperboloid are convex supporting: take F(p)=squared distance from

axis of rotation.

(iii) The surface of revolution x2+y2=e~z is convex supporting (with

F'as above). These last two examples are diffeomorphic and have negative

curvatures.

(iv) The paraboloid of revolution x2+y2=z2 is an example of a convex

supporting manifold with positive curvature (F as before).

(v) Letp be a point on the circle Sx. Then S1 — {p} is a convex supporting

domain. Hence any harmonic map from a compact manifold to S1 is

either constant or surjective.

(vi) On the torus T2 endowed with the fiat metric, the open set D ob-

tained by removing two transverse circles is convex supporting. For if the

torus is constructed in the usual manner by glueing the edges of a rectangle

together, the transverse circles can be identified with an adjacent pair of

edges, and it is easy to see that any closed subset of the rectangle which

does not intersect any edge is convex supporting.

(vii) Every open convex supporting subset of a riemannian manifold

is contained in a maximal open convex supporting set; i.e., one which

is not properly contained in any other open convex supporting set.

(Similarly, every connected open convex supporting set is contained in a

maximal connected open convex supporting set.) Proof. Use Zorn's

lemma. Let F be a family of open convex supporting subsets which is

linearly ordered by the inclusion relation. Then U T is convex supporting

since any compact subset of U T is contained in one of the members of T.
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The convex supporting domain D described in (vi) is maximal because

any larger open subset of D contains a closed geodesic. Also, from (i) it

follows that the complement of a maximal open convex supporting subset

is nowhere dense.

(viii) Consider the ordinary 2-sphere S2 equipped with the standard

riemannian metric. Then each of the open hemispheres obtained by

removing a great circle is convex supporting (take F(/?)=square of chord

joining/) to the nearest pole) but the union of the two hemispheres is not

a maximal open convex supporting open set and neither hemisphere is a

maximal connected open convex supporting set. In order to obtain a

maximal open convex supporting domain (which happens to be connected)

it suffices to remove half of a great circle; i.e., an arc y joining two poles.

(The verification of this fact is somewhat tedious. Let (0, ç>) be standard

spherical coordinates with 0=polar angle. We allow 0 and q> to run from

0 to w and from 0 to 27r respectively. Let y be the half-circle at <p=0 which

joins the poles. Let D be S2 with y removed, and let K be a compact subset

of D. If we set F(B, cp) = { — 1 +(1 — l/«)exp(<p//i)}sin 6, it turns out that the

Hessian matrix of F is diagonal and that the diagonal entries are positive

over a range of values of (6, <p) sufficient to cover K provided that n is

sufficiently large. The value of n depends on A'.)

(ix) Finally, we mention an application to dynamics. Let F be a function

which is defined and strictly convex on some domain D and let y=y(t)

be a geodesic segment in D. Then F°y is a convex function on R. Hence it is

easy to show that every (not necessarily closed) geodesic which enters a

compact convex supporting domain must eventually leave the domain.

Now consider the conservative dynamical system associated with a potential

Fon a manifold Y. I.e., we consider the trajectories of the system

(*) D2x',dt2 - -VF.

As is well known every solution to (*) with total energy //"is a re-param-

etrized geodesic with respect to the Jacobi metric hij = (H—V)hij (where

ha is the metric tensor of Y). Hence one can construct compact domains

with the property that every solution of (*) with total energy H which

enters such a domain must leave the domain. The sizes of these domains

depend on H.
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