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PROPERTIES OF STONE-CECH COMPACTIFICATIONS
OF DISCRETE SPACES!

NANCY M. WARREN

ABSTRACT. Let BN be the Stone-Cech compactification of the
integers N. It is shown that if p is a P-point of SN—N, then fN—
N—{p} is not normal. Let D be an uncountable discrete set and
E, be the set of points in D — D in the closures of countable subsets
of D It is shown that there is a two-valued continuous function on
E, which cannot be extended continuously to fD.

The purpose of this paper is to answer some questions raised in two
papers. one by W. W. Comfort and S. Negrepontis [1] and the other by
N. J. Fine and L. Gillman [2]. The first question, attributed to Gillman
in [1], is whether SN— N—{p} is normal when p is a P-point of SN—N.
The answer is negative assuming the continuum hypothesis (designated
by [CH]). The second question is raised in [2]. Let D be an uncountable
discrete set and let £, be the set of points in SD—D in the closures of
countable subsets of D. Is E, C*-embedded in fD—D? That is, does
every bounded continuous function on E, have a continuous extension
to BD—D? Again the answer is negative; in fact, there is a two-valued
function on E, which cannot be extended continuously to fD— D.

Although the first question is a corollary to the second using a result
from [1], I will sketch a straightforward proof of the answer.

I. Taeorem 1. [CH] BN—N—{p} is not normal if p is a P-point of
BN—N.

Proor. Let {W,},<,, be open-and-closed neighborhoods of p such
that:
(i) {W,} is a base at p;
(ii) Wy=pN—N;
(iii) W,< W, (properly) for f<y;
@) No<a, Wa={p}
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Let U,=W,—W,.,. Each U, is open-and-closed in SN—N. Pick P-
points p, € U,. Then p is a limit point of {p,},<,,. For each a<w,, let
{U,s}s<w, be open-and-closed neighborhoods of p, such that:

(i) {U,s} is a base at p,:
(i) Up<=Uy;

(iii) U,,< U, (properly) for g<y;

(lV) nd<¢ol Uaé={pa}'

In BN—N—{p}, let A=cl({p.})s<w,  Throughout the proof, A will stand
for a countable limit ordinal. Let

B, = cl(U (U, — U,A)) A (ﬂWa), and let B = J B,.
a<i a<i i<w,

I will show that 4 and B are disjoint closed sets in SN—N—{p} which
cannot be separated.

By definition, A is closed. To show that B is closed, suppose that g is a
limit point of B and that # is the smallest ordinal such that g ¢ Wj. I will
show that if § is a nonlimit ordinal, then ¢ cannot be a limit point of B.
If B is a nonlimit ordinal, then U,_;=W;_,— W, is a neighborhood of g¢.
If 4 is a countable limit ordinal and A>8, B,< (\,<; W,=Wj, so
B,NUsy_,=w.If A<B, Uy_,NU,= & for a<f—1, so

Uﬁ—l f\( U Uz - Uai) =g
a<i

and since Uy_, is open, Us_yNcl((Uy<, U,—U,))=@.S0 B,"U;_1=0

if A<B. Now, since B=J; <o, B;, Us_yNB= so g is not a limit point

of B.

If 2 and A’ are distinct countable limit ordinals, then B; and B;. are
disjoint, and B; and cl({p,}),< are disjoint, so 4 and B are disjoint. This
relies on a lemma of M. E. Rudin [3, p. 148, Lemma 1].

To show that 4 and B cannot be separated, let A <O and B< V' where
O and V are open sets in BN—N—{p}. Then for each countable ordinal «,
there exists a f,>« such that U,y < 0. Let 2,=0, «,=p, and, in general,
let «,=f, . Lety be the limit of the sequence {5, }, then y is also the
limit of the sequence {«,}.

Now, B,=cl((U.<; V.= U,))N(Na<, W,) and B,=V. For each n,
U, s, —U,,<0 and Upp, —Uspy< U, — U, So

nﬂzn
Vﬁ [U (Uanpa - Ua”~,):l # g

and hence, V" and O are not disjoint. So 4 and B cannot be separated in
BN—N—{p}.
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II. W. W. Comfort and S. Negrepontis have given in [1] a proof by
L. Gillman that [CH] BN—N—{p} is not normal if p is a non-P-point of
BN—N. Also they prove that [CH] for each p in SN —N there is a copy of
PN—N contained in fN—N relative to which p is a P-point. Either
of these results combined with Theorem 1 gives that [CH] gN—N—{p}
is not normal if p is any point of N—N.

Let D, be a discrete set of cardinality X, and let D, be the set of points
in BD,— D, in the closures of countable subsets of D;. W. W. Comfort
and S. Negrepontis show in [1] that [CH] if p is a P-point of SN—N, then
D, is homeomorphic to SN—N—{p}. Observe that if we identify D; with
any subset of D of cardinality X,, then D, is an open-and-closed subset of
E,. Hence, a consequence of Theorem 1 is that [CH] E, is not normal.

If Dg is the one-point compactification of D,, then Comfort and
Negrepontis have shown that [CH] D§ is homeomorphic to SN—N.
Theorem 2, which does not use the continuum hypothesis, shows the
existence of a continuous two-valued function on D, which cannot be
extended continuously to fD,— D,. Such a function cannot be extended
continuously to Dg'. So Theorem 2 implies Theorem 1. In fact, a stronger
theorem which does not use the continuum hypothesis is true. If Dy is
homeomorphic to pN—N and p € BN— N, then N—N—{p} is not normal.
Perhaps, the reason cne so often needs the continuum hypothesis to prove
theorems about SN—N is that one wants SN—N to be homeomorphic
to Dg. Certainly this substitution can often be made and it would be
interesting to find out how often.

III. THEOREM 2. There is a continuous two-valued function on Ey which
cannot be continuously extended to fD— D.

Proor. Without loss of generaiity assume that the cardinality of D
is R,. This can be done since, as was pointed out in §II, D, is both open
and closed in E,.

N. Aronszajn [4] and F. B. Jones [5] have shown the existence of a
partial order = on D such that:

(1) if xe D, {y e D:y=x} is well ordered by =.
(ii) Every totally ordered subset of D is countable.

(iiiy For each countable ordinal «, the set X,={x e D:{y e D:y=<x}
is order isomorphic with a} is countable.

(lV) D= Ua<(ox Xa‘

Let Y,=UJg<. X5. For each countable ordinal «, I will select Z,< Y,
by induction. Let Z,= . If « is not a limit ordinal, 21, let Z,=Z,_,.

If « is a limit ordinal, index the terms of X, by the integers as {x3}.
Select a sequence of ordinals, {f,}, 0=8,<f,<f,<- -, having « as a
limit. Let p’» be the term of X, such that pi»<x}. Suppose that Z; has
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been defined for all 3<«, then

z,=U(@Z, - %, ) VU {x:phr s x < x3}.
n=1 n=1

1%

If A< D, let A denote the intersection of 8D — D with the closure of 4
in #D. Then Eg=J,<,, Y, and Y,=2Z,Ucl((Y,—Z,)) so

Q E=(U2z) u(Uen-2z).
a<wi 2<w)
I will show that U,<., Z, and U,<,, cl((Y,—Z,)) are disjoint, closed
sets in E, which cannot be separated in fD—D.
First, I will prove two lemmas to establish some properties of the Z,’s.

LEMMA 1. For all « and B, countable ordinals, X,NZ; is finite.

The proof is by induction on .

If =0,Z,=92,s0 X,NZ,=3.

Assume that for all y<f, X,NZ, is finite for all «. If 8 is a nonlimit
ordinal, Z,=Z, , and X,NZ,_, is finite by the induction hypothesis.

If B is a limit ordinal, then

Z,=U(Zy, = Y, ) VU {x:ph = x < xf}
n21 nz1

where 0=8,<f,< * - - is a previously chosen sequence converging to f.
If a2, X,NZ;=2. Otherwise, there exists an integer i such that
B:=«<fi.,. Then X,= Yy, . So

i+1 7

X,NZ;,=X,N I:U(Zﬂ,, - Y, DuU{x:iphrsx< x,’;}:|

n=1 n=1
X,NZ,, is finite by the induction hypothesis for n=1,---, i+1. Each
set of the form {x:pf»<x<x%} is totally ordered, so X,N{x:pfr<x<x5}
contains at most one element for each n=1, -+ ,i So X,NZ, is finite.

LemMA 2. If B and « are countable ordinals and B<x, then Zy—Z, and
(Yp—Zp)NZ, are finite.

The proof is by induction on «.

If a=1 and B=0, then Zy=¢g and Z;=9@ so Z,—Z,=g and
(Yo=Zy)NZ,=2.

Assume that for all y<«, both Z;—Z, and (Y;—Z4)NZ, are finite for
all g<y.

If « is a nonlimit ordinal, Z,=Z,_, and by the induction hypothesis,
for all B<a—1, both Zy—Z, ; and (Y;—Z4;)NZ,_, are finite and, clearly,
Z, 1 —Z,=2 and (Y, ,—Z, )NZ,=2.

xX
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If o is a limit ordinal, let 8’ be the smallest ordinal less than o for which
it is not known that both Z;—Z, and (Y, —Z,)NZ, are finite.

If #” is a nonlimit ordinal, then Zy;=Z; ; and both Z;_,—Z, and
(Yp_1—Z4_1)NZ, are finite by the choice of f'.

Suppose £ is a limit ordinal. By definition

2, = Uz, = Y, ) VU {x:pl = x <xj}
n21 n21

for a previously chosen sequence 0=p§,<f,< - - - converging to «. There
exists an i such that B;=f'<f;,, and then Z; <Y,  and Y;—Z,c
Y., So

i+1

Zﬂ' -_— Za = Ul [[Zﬂ' N (Yﬂn -_— Yﬂﬁ—l)] - Z,].
For n=1,--- i, "~
[Zg O (Yo = Yo )] = Z, < [Zp O (Y, — Yy, )] — (Z5, — Yi,)
[ (Yﬂn - Zﬂ") ('\ Zﬂ'
which is finite by the induction hypothesis. Also,
(Zg O YVpisr = Yp )] = Zo = [Zg O Yy, = Yp)] = [Zgoy — Y]
< Zﬁ’ - Zﬂi+l
which is finite by the induction hypothesis. So Z;—Z, is finite.
Also,

(Yﬁ' - Zﬁ') ﬂ Za
i+l 7
= (Yﬂ' - Zﬂ') ﬂ |\LJ(Zp,l - Yﬂn-l) U U {X :pﬁ“ é X < x:}].
=1 n=1
For n=1, - - - i, "
(Yﬂ' - Zﬁ') N (Zﬂn - Yﬂn—l) < Zﬂu - Zp"

and

(Yﬂ' - Zﬂ) N (Zﬂiﬂ - Yﬁi) < (Yﬁ - ZB) N Zﬁi-n’
both of which are finite by the induction hypothesis.

Now let 1=n=i and consider (Y —Zp)N{x:pir<x<x%}. There is a
point y € X,. such that pi»< y<x5. Next, by definition of Z,., since ' is a
limit ordinal, there are an ordinal y<f’ and a point z € X, such that
ZyN{x:x<y}={x:2<x<y}. Then

(Yp=Zp)n{x:phr Sx<xi}={x:pfr Sx <z}
(=2 in case zZpi», i.e., y<P,). Since {x: pir<x<z}< ¥, we have

(Yﬂ’ - Zﬂ') N {x :pﬁn é x < x:} < [(Y)' - Z)') v (Z)' - Zﬁ’)] N Zaa
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which is finite, since by the induction hypotheses, both (Y,—Z,)NZ, and
Z,—Zy are finite. It follows that (Y, —Z;)NZ, is finite.

PrOOF OF THEOREM 2.  To show that U, <,, Z, and U, <., cl((Y,—Z,))
are closed and disjoint in E,, consider Z, and cl(Y;—Z;) for y, f<m;.
If y=, then Z,N(Y,—Z))=& so clypZ,Nclyp(Y,—Z,)=2 [6], and
therefore, Z, and cl(Y,—Z,) are disjoint. If y<p, Z,< Y; and Z,—Z; is
finite by Lemma 2. So Z,N(Y;—Z,) is finite, and hence Z,Ncl(Y;—Z,)=
@. If <y, then (Yz—Zy)NZ, is finite by Lemma 2, so cl((Y;—Z;)N
Z,=03.80 Us<co, Z, and U, <o, cl((Y,—Z,)) are disjoint.

Next, these sets are open, since any set of the form 4 is open. Finally,
since they are complementary (*), they are also closed.

If Us<o, Z, and U, <o, cl((Y,—Z,)) can be separated in fD— D, then
there exists a set Z< D such that Z> |, .,, Z, and

ZnN ( U (Y, —Z,))) =g.
d<0)1

Then Z,<Z and so Z,—Z must be finite for all a<e;. Also if ZN

c((Y,—Z,))=2 then ZN(Y,—Z,) is finite. Since Y,=U;<, Xp, ZN

(X3—Z,) must, for all «<w,, be finite for all <a. But since X;NZ, is

finite by Lemma 1, ZN X, must be finite for all f< ;.

I will complete the proof by showing that there is no set Z< D with
the properties described in the preceding paragraph.

Suppose there is such a set Z. Then for every countable limit ordinal «,
since Z,—Z is finite, there exists an f(«) <« such that if y is the term of
X such that y<xj, then {x:y=x<x{}<Z. If « is a nonlimit ordinal, let
f(x)=o—1 and let f(0)=0.

Then there exists y<w,; such that f(«)=y for uncountably many «.
For, if not, then {x:f(x)<p} is countable for each f<w;, and letting
Co={a:f(x)=0}; C, is countable and has a supremum o, «;>0. In
general, let C,={x:f(x)=«,}; C, is countable and has a supremum
®,.1, Where a, y>a,, since «,+1 is in C,. Then if «’ is the limit of the
sequence {«,}, and since f(2)<2’, f(«)=«; for some i, but then &’ is in
C, and o' Za,,, which is a contradiction of the choice of «".

Let ¢ be a point of X such that g<xj for uncountably many «’s such
that y=f(x). Let W={x:q<x and {y:g<y=x}<Z}. Then W is un-
countable by the choice of g. Let A={x:¢<x and there are uncountably
many z>x such that {y:g<y=z}<Z}. Observe that A< W. Also 4 is
uncountable. Because if 4 is countable, then A< Y for some 8>y, and
if x' € X, there are only countably many z>x’ such that {y:g<y=z}<Z.
So W— Y, is countable, hence W is countable which is a contradiction.

For each 2>, let n(x)=the number of terms in ANX,. Then n() is
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finite since A <Z and n(«)>0 since A is uncountable. Pick n, so that for
uncountably many «>y. n(«)=n,. Let «, be the first ordinal greater than
y such that n(eg)=n,. Then for each ordinal o>, such that n(a)=n,,
define F,: X,NA—X, NA where F,(y) is the term of X, between g and y.
Clearly F,(y)<y for all o.. If y € A4, there are uncountably many z> such
that {x:g<x=:z}<Z and since F,(y)<py, there are uncountably many
z>F,(y) such that {x:g<x=z}<Z, so F,(y) € A.

I will now show that F, is one-to-one. If x € Xaor\A, there 1s a z> x,
z¢ Y, and z € A. Then the term y of X, between ¢ and z belongs to 4 and
F,(y)=x.So, since X,N 4 and X, N A each have n, terms, F, is one-to-one.

Let xo € X, N A. For each o> a, with n(«)=n,, let y, be the unique term
of X, such that x,=F,(y,). Then B={y,} is a totally ordered subset of D,
since if o, <a,, then there is a term y of X, between x, and ),,. But
Fo(y)=x,; hence y=y, ; 50 y,, <, But since there are uncountably many
« such that n(a)=n,, B is uncountable which is a contradiction.

So there is no set Z in D which separates

UZ, and U cl((Y,—Z,)

a<w a<w
in 8D—D. ’ ’
So if f is a function from E, to {0, 1} such that f~1(0)=U,<a, Z, and
[ () =U,<w, M(Y,—Z,)), then f is continuous on E,, but f has no
continuous extension to fD—D.

COROLLARY. E, is not normal.

Proor. For each limit ordinal A<w,, let Q;=Y,,, —Y;. Let A=
Ui<a, €lppQ,, then DcA<BD so fA=BD. Pick p, € J;. Then D'=
{Pi}r<w, is a discrete set in fD— D of cardinality X, and D'<E,. D' is
C*-embedded in 4, since to extend a function f from D’ to A4, assign the
value f(p;) to each point of cl,pQ,. Therefore, clyD'=clypD'=4D",
and since D'<fD—D, so is fD'.

Let E; be the set of all points in #D’ which are limit points of countable
subsets of D'. Then Ej is a closed subset of E,. Applying Theorem 2 to
Eg, there is a continuous function g from E; to {0, 1} which cannot be
extended continuously to fD'—D’. Then g cannot be extended contin-
uously to EqUD’ since B(EqUD")=pD". Now, g7(0) and g~(1) are dis-
joint closed sets in E,. Suppose U and V are open in E, and g~1(0)<
U, g '(1)eV and UNnV=g. Then all but at most a finite number of ele-
ments of D’ are in UUV, so g can be extended continuously to EqUD’,
which is a contradiction to the choice of g, so E, is not normal.

COROLLARY. E,UD is not normal.

PrRoOF. Since E, is closed in E,UD, E,UD is not normal.
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