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PROPERTIES  OF  STONE-CECH  COMPACTIFICATIONS

OF DISCRETE SPACES1

nancy m. warren

Abstract. Let ßN be the Stone-Cech compactification of the

integers N. It is shown that if p is a /"-point of ßN—N, then ßN—

N—{p) is not normal. Let D be an uncountable discrete set and

£0 be the set of points in ßD—D in the closures of countable subsets

of D It is shown that there is a two-valued continuous function on

£0 which cannot be extended continuously to ßD.

The purpose of this paper is to answer some questions raised in two

papers, one by W. W. Comfort and S. Negrepontis [1] and the other by

N. J. Fine and L. Gillman [2]. The first question, attributed to Gillman

in [1], is whether ßN—N—{p} is normal when p is a F-point of ßN—N.

The answer is negative assuming the continuum hypothesis (designated

by [CH]). The second question is raised in [2]. Let D be an uncountable

discrete set and let £0 be the set of points in ßD—D in the closures of

countable subsets of D. Is £0 C""-embedded in ßD—D? That is, does

every bounded continuous function on £c have a continuous extension

to ßD—D1 Again the answer is negative; in fact, there is a two-valued

function on £0 which cannot be extended continuously to ßD—D.

Although the first question is a corollary to the second using a result

from [1], I will sketch a straightforward proof of the answer.

I. Theorem 1.    [CH] ßN—N—{p} is not normal if p is a P-point of

ßN-N.

Proof. Let {Wx}x<u>¡ he open-and-closed neighborhoods of p such

that:

(i) {W,} is a base atp;

(ii) W0=ßN-N;
(iii) Wyc W„ (properly) for ß<y;

(iv) PU«,, W={p}.
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Let Ua=*Wa-W,+1. Each Ux is open-and-closed in ßN-N. Pick P-

points px e Ux. Then p is a limit point of {/?„},<e>i. For each a<Wj, let

{t7aa}a<i0l be open-and-closed neighborhoods of/^ such that:

(i) {Uxi} is abase at/>a:

00 Ux0^Ux;
(iii) t/^c £/,„ (properly) for ß<y;

(iv) Ha«»! £4«={/>,}-
In ßN—N—{p}, let /l=cl({/>tl})5I<a,i. Throughout the proof, X will stand

for a countable limit ordinal. Let

B, = cl( U (£/« - £^)) n ( C\w\,       and let B = \J Bx.
\x<X / \a-cl       / X«o1

I will show that A and 5 are disjoint closed sets in ßN—N—{p} which

cannot be separated.

By definition, A is closed. To show that B is closed, suppose that q is a

limit point of B and that ß is the smallest ordinal such that q $ Wß. I will

show that if ß is a nonlimit ordinal, then q cannot be a limit point of B.

If ß is a nonlimit ordinal, then Uß_x= Wß_x— Wß is a neighborhood of ¡7.

If X is a countable limit ordinal and X>ß, Bk<^ (~)*<x Wx<=Wß, so

BxC\Uß_x=0- lfX<ß, Uß_xr\Ux=0 for a<|S-l,so

í/^n^lj^-í/^ = 0

and since Uß_x is open, Uß_x<~^c\((\Jx<x Ux—UxX))=0. So Bxi ií//¡_1=0

if A<p\ Now, since 5= Ujkw, Bx, Uß_x<~\B= 0 so 9 is not a limit point

of Ä.

If X and A' are distinct countable limit ordinals, then Bx and By are

disjoint, and Bx and cl({/7a})3[<A are disjoint, so A and 5 are disjoint. This

relies on a lemma of M. E. Rudin [3, p. 148, Lemma 1].

To show that A and B cannot be separated, let A<=- O and Bc:V where

O and Kare open sets in ßN—N—{p}. Then for each countable ordinal a,

there exists a ßx>a. such that Uxß cz0. Let a0=0, a,=p\, and, in general,

let a.n=ßXn_i. Let 7 be the limit of the sequence {ßxJ, then y is also the

limit of the sequence {an}.

Now, By=d(({Jx<yUx-Uxy))n(r]x<y Wx) and ß,cF. For each n,

UXnßx -Ux^O and UXnßi -Ux,^ Ua-U.nV So

rn U (ux„ßx - uxj * 0

and hence, V and O are not disjoint. So A and 5 cannot be separated in

ßN-N-{p}.
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II. W. W. Comfort and S. Negrepontis have given in [1] a proof by

L. Gillman that [CH] ßN—N—{p} is not normal if p is a non-F-point of

ßN—N. Also they prove that [CH] for each p in ßN—N there is a copy of

ßN—N contained in ßN—N relative to which p is a F-point. Either

of these results combined with Theorem 1 gives that [CH] ßN—N—{p}

is not normal if p is any point of ßN—N.

Let Dx he a discrete set of cardinality Xj and let D0 he the set of points

in ßDx — Dx in the closures of countable subsets of Dx. W. W. Comfort

and S. Negrepontis show in [1] that [CH] ifp is a F-point of ßN—N, then

D0 is homeomorphic to ßN—N—{p}. Observe that if we identify Dx with

any subset of D of cardinality Kl5 then D0 is an open-and-closed subset of

£0. Hence, a consequence of Theorem 1 is that [CH] £0 is not normal.

If D* is the one-point compactification of D0, then Comfort and

Negrepontis have shown that [CH] Z)J is homeomorphic to ßN—N.

Theorem 2, which does not use the continuum hypothesis, shows the

existence of a continuous two-valued function on D0 which cannot be

extended continuously to ßDx—Dx. Such a function cannot be extended

continuously to D*. So Theorem 2 implies Theorem 1. In fact, a stronger

theorem which does not use the continuum hypothesis is true. If D* is

homeomorphic to ßN—N and p e ßN—N, then ßN—N—{p} is not normal.

Perhaps, the reason one so often needs the continuum hypothesis to prove

theorems about ßN—N is that one wants ßN—N to be homeomorphic

to D*. Certainly this substitution can often be made and it would be

interesting to find out how often.

III. Theorem 2. There is a continuous two-valued function on £0 which

cannot be continuously extended to ßD—D.

Proof. Without loss of generality assume that the cardinality of D

is Kx. This can be done since, as was pointed out in §11, D0 is both open

and closed in £„.

N. Aronszajn [4] and F. B. Jones [5] have shown the existence of a

partial order ^ on D such that:

(i) If x e D, {y e D:y^x} is well ordered by :£.

(ii) Every totally ordered subset of D is countable.

(iif) For each countable ordinal ¡x, the set Xx={x e D:{y e D:y^x}

is order isomorphic with a} is countable.

(iv) D=\J.<aiX..

Let Ya=(Jß<ltXß. For each countable ordinal a, I will select Zx<=: Yx

by induction. Let Z0= 0. If a is not a limit ordinal, a_ 1, let ZX=ZX_X.

If a is a limit ordinal, index the terms of Xx by the integers as {x"n}.

Select a sequence of ordinals, {/?„}, 0=ß0<ßx<ß2<- ■ • , having a as a

limit. Let pßn* he the term of Xßn such that />£fl<jc". Suppose that Zp has
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been defined for all /5<a, then

Z, - U (Ztn - YßnJ u U {x : p{" = x < xl).
näl nSl

If A^D, let Ä denote the intersection of ßD—D with the closure of A

in ßD. Then Eg**\Ja<atl Yx and Y=ZxKje\((Y-Zx)) so

(*) £0= (U2,) u(Uci((y.-2ü)).
\a<íiíi/ \jt<ü»i /

I will show that Uk»,^ and {jx<(aic\((Yx—Zx)) are disjoint, closed

sets in £0 which cannot be separated in ßD—D.

First, I will prove two lemmas to establish some properties of the Z^'s.

Lemma 1.    For all a and ß, countable ordinals, XxC\Zß is finite.

The proof is by induction on ß.

If ß=0, Zo=0, so XxnZo=0.

Assume that for all y<ß, XxC\Zy is finite for all a. If ß is a nonlimit

ordinal, Zß—Zß_x and XxC\Zß_x is finite by the induction hypothesis.

If ß is a limit ordinal, then

Z„ = U (Z„. - V.) U U {x : pß,: ̂ x< xß}
nSl nël

where 0=/J0</?1< • • • is a previously chosen sequence converging to ß.

If a_jô, A'anZi=0. Otherwise, there exists an integer i such that

ftjS«<A+i. Then *.<= y>|+i. So

^nz^^n U(Z,„- F,„_1)uU{.x:pí:" = x<.xf}

XxC\Zßn is finite by the induction hypothesis for w=l, • • • , r'+l. Each

set of the form {x'.p^<x<x^ is totally ordered, so Xxr\{x:pßnn^x<xßn}

contains at most one element for each n=l. ••■,/. So XxC\Zß is finite.

Lemma 2. If ß and a are countable ordinals and ß<%, then Zß—Zx and

(Yß—Zß)nZx are finite.

The proof is by induction on a.

If a=l and ß=0, then Zo=0 and Zx=0 so Zo—Zx=0 and

(Yo-Zo)r\Zx=0.
Assume that for all y<«, both Zß—Zy and (Yß—Zß)C\Zy are finite for

all ß<y.
If a is a nonlimit ordinal. Zx=Zx_l and by the induction hypothesis,

for all ß<%— 1, both Zß—Zx_x and ( Yß—Zß)nZx_x are finite and, clearly,

Zx_x-Z=0 and(Yx_x-Zx_x)nZx=0.
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If a is a limit ordinal, let ß' be the smallest ordinal less than a for which

it is not known that both Zp—Zx and (Yß—Zß.)nZx are finite.

If ß' is a nonlimit ordinal, then Zß,=Zß._x and both Zß,_x—Zx and

OV_!— Zß,_x)nZa are finite by the choice of /?'.
Suppose ß' is a limit ordinal. By definition

z. = U (z,, - y,._a) u U {x-.pl» = * < x^}
«El nêl

for a previously chosen sequence 0=/?0<p\< ■ ■ • converging to a. There

exists an i such that ßi^üß'<ßi+x and then Zr<= y^     and  y¿—Zß.<z:

Yßi+l' So

z,. - zx = U [[zr n (Yßn - y,..,)] - zj.

For «=!,•■•,/,
7! = 1

rz,. n (Y„n - ¥,_,)] - zx e [Z/r 0(7^- y^)] - (z,„ - r^)

c(^„-z^)nzr

which is finite by the induction hypothesis. Also,

[zß. n (y,(+1 - Yft)] - z. c [z,. n (y„+1 - y„)] - [zA(+I - y,,]

c z,. - zíí+I

which is finite by the induction hypothesis. So Zß—Z„ is finite.

Also,

(Y,. - Z„.) n Z.

= (Yß.- Z„.) n

For «=1, • • • i,

U (z,. - y^,) uU{xy;<x< x^}
•2=1 n=l

-> (z,„ - y*.,) <= z,. - z,.,
and

(y,. - Z,.) n (Z,j+1 - Yfi) c (y,. - z,.) n Z„+1,

both of which are finite by the induction hypothesis.

Now let \^n<i and consider (Yß—Zß.)n{x:pin^x<x"„}. There is a

point y e Xß. such th&tp{n<y<x3n. Next, by definition of Zr, since ß' is a

limit ordinal, there are an ordinal y<ß' and a point z e Xy such that

Zi.n{.r:x</}={;v:z<;c<j}. Then

(Yß. - Zß.) n {*:/„" < x < <} = {x -.pi" ̂ x<z}

(=0 in case z^/>J\ i.e., y=/?n). Since {x:/>£"_;x<z}c: yy we have

(yr - Z„.) r\{x:p£<x< x°v} cr [(Y - Z,) U (Z, - Zr)] n Z„
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which is finite, since by the induction hypotheses, both (Yy—Zy)r\Zx and

Zy—Zß. are finite. It follows that (Yß.—Zß)r\Zx is finite.

Proof of Theorem 2. To show that (jx<a¡l Zx and \Jx<a>l cl(( Yx—Zx))

are closed and disjoint in £0, consider Zy and cl( Yß—Zß) for y, ß<.cox.

If y=ß, then Zyn(Yy-Zy)=0 so clßDZyndßD(Yy-Zy)= 0 [6], and

therefore, Zy and cl( Yy—Zy) are disjoint. If y<ß, Zy<= Yß and Zy—Zß is

finite by Lemma 2. So ZyO( Yß—Zß) is finite, and hence Zy(~\cl( Yß—Zß)=

0. If ß<y, then (Yß-Zß)nZy is finite by Lemma 2, so cl((Yß-Zß))r\

Zy=0. So Ua<Ml^a and Ua<co1 cl(( F^-Zj)) are disjoint.

Next, these sets are open, since any set of the form A is open. Finally,

since they are complementary (*), they are also closed.

If LU«^* and \Jx<a>l cl(( Yx—Zx)) can be separated in ßD—D, then

there exists a set Zc D such that Z=> UJ<a)i Z., and

Zn ( Ucl((F,-za))) = 0.

Then ZX^Z and so Zx—Z must be finite for all a<co1. Also if 2<~\

el((Y-Zx))=0 then Zr\(Yx-Zx) is finite. Since Y = (]ß<xXß, Zr\

(Xß—Zx) must, for all <x<a>x, be finite for all /3<a. But since XßC\Zx is

finite by Lemma 1, Zr\Xß must be finite for all ß<cox-

I will complete the proof by showing that there is no set Zc D with

the properties described in the preceding paragraph.

Suppose there is such a set Z. Then for every countable limit ordinal a,

since Zx—Z is finite, there exists an/(a)<a such that if y is the term of

Xf{x) such that v<x\, then {x:y^x<xl}<^Z. If a is a nonlimit ordinal, let

/(a) = a-l and let f(0)=0.
Then there exists y<cox such that/(a) = y for uncountably many a.

For, if not, then {oL:f(tx)<ß} is countable for each ß<ioly and letting

Co={a:/((x)=0}; C0 is countable and has a supremum al5 a^O. In

general, let C„={a:/(a)<:x„}; C„ is countable and has a supremum

an+i' where an+1>a„, since an+l is in Cn. Then if a' is the limit of the

sequence {a„}, and since/(«')<a',/(oc')_a, for some /', but then a' is in

C¡ and oc'^a<+1 which is a contradiction of the choice of a'.

Let q be a point of X such that q<x\ for uncountably many a's such

that y=/(a). Let H/={jc:c/<x: and {y:q<y^x}^Z}. Then IF is un-

countable by the choice of q. Let A = {x:q<x and there are uncountably

many z>x such that {y:q<y^z}cZ}. Observe that A^W. Also A is

uncountable. Because if A is countable, then Ac-Yß for some /5>y, and

if x e Xß, there are only countably many z>x' such that {y:q<y^z}^Z.

So W— Yß is countable, hence W is countable which is a contradiction.

For each a>y, let w(a) = the number of terms in AC\XX. Then «(a) is
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finite since A<^Z and n(a)>0 since A is uncountable. Pick «0 so that for

uncountably many a>y. n(<x)=n0. Let a0 be the first ordinal greater than

y such that n(c/.0)=n0. Then for each ordinal a>oc0 such that n(cr.) = n0,

define Fx:XxnA-+Xx C\A where Fx(y) is the term of A" between q andy.

Clearly Fx(y)<y for all x. If y e A, there are uncountably many z>y such

that {x:<7<x_z}<=Z and since Fxiy)<y, there are uncountably many

z>Fxiy) such that {x:<7<x_z}<=Z, so Fxiy) e A.

I will now show that Fx is one-to-one. If x e XX<¡C\A, there is a z>;c,

z <£ Yx and z e /I. Then the term y of Xx between q and z belongs to /I and

FÂy)=x. So, since A^nA and Xx r\A each have n„ terms, Fx is one-to-one.

Let x-0 e XXo(~\A. For each a>a0 with n(a.)=n0, let ya be the unique term

of Xx such that x0=Fx(yx). Then ß={ja} is a totally ordered subset of D,

since if a!<a2, then there is a term y of X^ between x0 and y . But

^"«0')=*o; hencey—yXi ; soy.<ya. But since there are uncountably many

a such that n(a)=«0, 5 is uncountable which is a contradiction.

So there is no set Z in D which separates

UZa   and    U cl(( Y.-Z.))

in ßD-D.

So if/is a function from £0 to {0, 1} such that/-1(0)=Ua<o»1 Z^ and

/_1(l)=Uit<a), c'((y«—ZJ), then / is continuous on £0, but / has no

continuous extension to ßD—D.

Corollary.    £0 is not normal.

Proof. For each limit ordinal A<a)1( let Qx= Yx+W¡¡— Yx. Let A =

U;.<(ai c\ßDQx, then D^A^ßD so ßA=ßD. Pick pxe°Qx. Then £>' =

{/,a}a<í»1 is a discrete set in ßD—D of cardinality Xa and D'<=E0. D' is

C*-embedded in A, since to extend a function/from D' to A, assign the

value f(px) to each point of c\ßDQx. Therefore, c\ßAD'—c\ßDD'=ßD',

and since D'^ßD—D, so is ßD'.

Let Eq be the set of all points in ßD' which are limit points of countable

subsets of D'. Then E¡¡ is a closed subset of £0. Applying Theorem 2 to

£0, there is a continuous function g from £<| to {0, 1} which cannot be

extended continuously to ßD' — D'. Then g cannot be extended contin-

uously to E'0\JD' since ß(E'6KjD')=ßD'. Now, g_1(0) and g~x(\) are dis-

joint closed sets in £„. Suppose U and V are open in £0 and g-1(0)<=

U, g-1(l)c V and UC\ V= 0. Then all but at most a finite number of ele-

ments of D' are in U\JV, so g can be extended continuously to £¿UD',

which is a contradiction to the choice of g, so £0 is not norma!.

Corollary. £0uD w ho/ normal.

Proof.    Since £0 is closed in £0u£>, E0uD is not normal.
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