PROPERTIES OF STONE-CECH COMPACTIFICATIONS OF DISCRETE SPACES¹

NANCY M. WARREN

ABSTRACT. Let βN be the Stone-Čech compactification of the integers N. It is shown that if p is a P-point of $\beta N-N$, then $\beta N-N-N$ is not normal. Let D be an uncountable discrete set and E_0 be the set of points in $\beta D-D$ in the closures of countable subsets of D. It is shown that there is a two-valued continuous function on E_0 which cannot be extended continuously to βD .

The purpose of this paper is to answer some questions raised in two papers, one by W. W. Comfort and S. Negrepontis [1] and the other by N. J. Fine and L. Gillman [2]. The first question, attributed to Gillman in [1], is whether $\beta N - N - \{p\}$ is normal when p is a P-point of $\beta N - N$. The answer is negative assuming the continuum hypothesis (designated by [CH]). The second question is raised in [2]. Let D be an uncountable discrete set and let E_0 be the set of points in $\beta D - D$ in the closures of countable subsets of D. Is E_0 C*-embedded in $\beta D - D$? That is, does every bounded continuous function on E_0 have a continuous extension to $\beta D - D$? Again the answer is negative; in fact, there is a two-valued function on E_0 which cannot be extended continuously to $\beta D - D$.

Although the first question is a corollary to the second using a result from [1], I will sketch a straightforward proof of the answer.

I. THEOREM 1. [CH] $\beta N - N - \{p\}$ is not normal if p is a P-point of $\beta N - N$.

PROOF. Let $\{W_{\alpha}\}_{\alpha<\omega_1}$ be open-and-closed neighborhoods of p such that:

- (i) $\{W_a\}$ is a base at p;
- (ii) $W_0 = \beta N N$;
- (iii) $W_{\gamma} \subset W_{\beta}$ (properly) for $\beta < \gamma$;
- (iv) $\bigcap_{\alpha < \omega_1} W_{\alpha} = \{p\}.$

Received by the editors November 2, 1969.

AMS 1969 subject classifications. Primary 5453; Secondary 5423, 5456.

Key words and phrases. Stone-Čech compactification, P-point, C*-embedding, discrete spaces.

¹ This paper is based on my doctoral thesis written under the direction of Professor Mary Ellen Rudin to whom I wish to express my appreciation for her encouragement and guidance.

[©] American Mathematical Society 1972

Let $U_{\alpha}=W_{\alpha}-W_{\alpha+1}$. Each U_{α} is open-and-closed in $\beta N-N$. Pick P-points $p_{\alpha}\in U_{\alpha}$. Then p is a limit point of $\{p_{\alpha}\}_{\alpha<\omega_{1}}$. For each $\alpha<\omega_{1}$, let $\{U_{\alpha\delta}\}_{\delta<\omega_{1}}$ be open-and-closed neighborhoods of p_{α} such that:

- (i) $\{U_{\alpha\delta}\}$ is a base at p_{α} ;
- (ii) $U_{\alpha 0} \subset U_{\alpha}$;
- (iii) $U_{\alpha\gamma} \subset U_{\alpha\beta}$ (properly) for $\beta < \gamma$;
- (iv) $\bigcap_{\delta < \omega_1} U_{\alpha\delta} = \{p_{\alpha}\}.$

In $\beta N - N - \{p\}$, let $A = \operatorname{cl}(\{p_{\alpha}\})_{\alpha < \omega_1}$. Throughout the proof, λ will stand for a countable limit ordinal. Let

$$B_{\lambda} = \operatorname{cl}\left(\bigcup_{\alpha<\lambda}(U_{\alpha}-U_{\alpha\lambda})\right) \cap \left(\bigcap_{\alpha<\lambda}W_{\alpha}\right), \quad \text{and let } B=\bigcup_{\lambda<\omega_{1}}B_{\lambda}.$$

I will show that A and B are disjoint closed sets in $\beta N - N - \{p\}$ which cannot be separated.

By definition, A is closed. To show that B is closed, suppose that q is a limit point of B and that β is the smallest ordinal such that $q \notin W_{\beta}$. I will show that if β is a nonlimit ordinal, then q cannot be a limit point of B. If β is a nonlimit ordinal, then $U_{\beta-1}=W_{\beta-1}-W_{\beta}$ is a neighborhood of q. If λ is a countable limit ordinal and $\lambda > \beta$, $B_{\lambda} \subset \bigcap_{\alpha < \lambda} W_{\alpha} \subset W_{\beta}$, so $B_{\lambda} \cap U_{\beta-1} = \emptyset$. If $\lambda < \beta$, $U_{\beta-1} \cap U_{\alpha} = \emptyset$ for $\alpha < \beta-1$, so

$$U_{\beta-1} \cap \left(\bigcup_{\alpha < \lambda} U_{\alpha} - U_{\alpha\lambda} \right) = \emptyset$$

and since $U_{\beta-1}$ is open, $U_{\beta-1} \cap \operatorname{cl}((\bigcup_{\alpha < \lambda} U_{\alpha} - U_{\alpha\lambda})) = \emptyset$. So $B_{\lambda} \cap U_{\beta-1} = \emptyset$ if $\lambda < \beta$. Now, since $B = \bigcup_{\lambda < \omega_1} B_{\lambda}$, $U_{\beta-1} \cap B = \emptyset$ so q is not a limit point of B.

If λ and λ' are distinct countable limit ordinals, then B_{λ} and $B_{\lambda'}$ are disjoint, and B_{λ} and $Cl(\{p_{\alpha}\})_{\alpha<\lambda}$ are disjoint, so A and B are disjoint. This relies on a lemma of M. E. Rudin [3, p. 148, Lemma 1].

To show that A and B cannot be separated, let $A \subseteq O$ and $B \subseteq V$ where O and V are open sets in $\beta N - N - \{p\}$. Then for each countable ordinal α , there exists a $\beta_{\alpha} > \alpha$ such that $U_{\alpha\beta_{\alpha}} \subseteq O$. Let $\alpha_0 = 0$, $\alpha_1 = \beta_{\alpha_0}$ and, in general, let $\alpha_n = \beta_{\alpha_{n-1}}$. Let γ be the limit of the sequence $\{\beta_{\alpha_n}\}$, then γ is also the limit of the sequence $\{\alpha_n\}$.

Now, $B_{\gamma} = \operatorname{cl}((\bigcup_{\alpha < \gamma} U_{\alpha} - U_{\alpha\gamma})) \cap (\bigcap_{\alpha < \gamma} W_{\alpha})$ and $B_{\gamma} \subset V$. For each n, $U_{\alpha_{n}\beta_{\alpha}} - U_{\alpha_{n}\gamma} \subset O$ and $U_{\alpha_{n}\beta_{\alpha}} - U_{\alpha_{n}\gamma} \subset U_{\alpha_{n}} - U_{\alpha_{n}\gamma}$. So

$$V \cap \left[\bigcup_n \left(U_{\alpha_n \beta_{\alpha_n}} - U_{\alpha_n \gamma} \right) \right] \neq \emptyset$$

and hence, V and O are not disjoint. So A and B cannot be separated in $\beta N - N - \{p\}$.

II. W. W. Comfort and S. Negrepontis have given in [1] a proof by L. Gillman that [CH] $\beta N - N - \{p\}$ is not normal if p is a non-P-point of $\beta N - N$. Also they prove that [CH] for each p in $\beta N - N$ there is a copy of $\beta N - N$ contained in $\beta N - N$ relative to which p is a P-point. Either of these results combined with Theorem 1 gives that [CH] $\beta N - N - \{p\}$ is not normal if p is any point of $\beta N - N$.

Let D_1 be a discrete set of cardinality \aleph_1 and let D_0 be the set of points in $\beta D_1 - D_1$ in the closures of countable subsets of D_1 . W. W. Comfort and S. Negrepontis show in [1] that [CH] if p is a P-point of $\beta N - N$, then D_0 is homeomorphic to $\beta N - N - \{p\}$. Observe that if we identify D_1 with any subset of D of cardinality \aleph_1 , then D_0 is an open-and-closed subset of E_0 . Hence, a consequence of Theorem 1 is that [CH] E_0 is not normal.

If D_0^* is the one-point compactification of D_0 , then Comfort and Negrepontis have shown that [CH] D_0^* is homeomorphic to $\beta N-N$. Theorem 2, which does not use the continuum hypothesis, shows the existence of a continuous two-valued function on D_0 which cannot be extended continuously to $\beta D_1 - D_1$. Such a function cannot be extended continuously to D_0^* . So Theorem 2 implies Theorem 1. In fact, a stronger theorem which does not use the continuum hypothesis is true. If D_0^* is homeomorphic to $\beta N-N$ and $p \in \beta N-N$, then $\beta N-N-\{p\}$ is not normal. Perhaps, the reason one so often needs the continuum hypothesis to prove theorems about $\beta N-N$ is that one wants $\beta N-N$ to be homeomorphic to D_0^* . Certainly this substitution can often be made and it would be interesting to find out how often.

III. Theorem 2. There is a continuous two-valued function on E_0 which cannot be continuously extended to $\beta D - D$.

PROOF. Without loss of generality assume that the cardinality of D is \aleph_1 . This can be done since, as was pointed out in §II, D_0 is both open and closed in E_0 .

- N. Aronszajn [4] and F. B. Jones [5] have shown the existence of a partial order \leq on D such that:
 - (i) If $x \in D$, $\{y \in D : y \le x\}$ is well ordered by \le .
 - (ii) Every totally ordered subset of D is countable.
- (iii) For each countable ordinal α , the set $X_{\alpha} = \{x \in D : \{y \in D : y \leq x\}$ is order isomorphic with $\alpha\}$ is countable.
 - (iv) $D = \bigcup_{\alpha < \omega_1} X_{\alpha}$.

Let $Y_{\alpha} = \bigcup_{\beta < \alpha} X_{\beta}$. For each countable ordinal α , I will select $Z_{\alpha} \subset Y_{\alpha}$ by induction. Let $Z_0 = \emptyset$. If α is not a limit ordinal, $\alpha \ge 1$, let $Z_{\alpha} = Z_{\alpha-1}$.

If α is a limit ordinal, index the terms of X_{α} by the integers as $\{x_n^{\alpha}\}$. Select a sequence of ordinals, $\{\beta_n\}$, $0=\beta_0<\beta_1<\beta_2<\cdots$, having α as a limit. Let $p_n^{\beta_n}$ be the term of X_{β_n} such that $p_n^{\beta_n}< x_n^{\alpha}$. Suppose that Z_{β} has

been defined for all $\beta < \alpha$, then

$$Z_{\alpha} = \bigcup_{n \geq 1} (Z_{\beta_n} - Y_{\beta_{n-1}}) \cup \bigcup_{n \geq 1} \{x : p_n^{\beta_n} \leq x < x_n^{\alpha} \}.$$

If $A \subseteq D$, let \overline{A} denote the intersection of $\beta D - D$ with the closure of A in βD . Then $E_0 = \bigcup_{\alpha < \omega_1} \overline{Y}_{\alpha}$ and $\overline{Y}_{\alpha} = Z_{\alpha} \cup \operatorname{cl}((Y_{\alpha} - Z_{\alpha}))$ so

$$(*) E_0 = \left(\bigcup_{\alpha < \omega_1} Z_{\alpha}\right) \cup \left(\bigcup_{\alpha < \omega_1} \operatorname{cl}((Y_{\alpha} - Z_{\alpha}))\right).$$

I will show that $\bigcup_{\alpha<\omega_1} Z_{\alpha}$ and $\bigcup_{\alpha<\omega_1} \operatorname{cl}((Y_{\alpha}-Z_{\alpha}))$ are disjoint, closed sets in E_0 which cannot be separated in $\beta D-D$.

First, I will prove two lemmas to establish some properties of the Z_a 's.

LEMMA 1. For all α and β , countable ordinals, $X_{\alpha} \cap Z_{\beta}$ is finite.

The proof is by induction on β .

If $\beta = 0$, $Z_0 = \emptyset$, so $X_{\alpha} \cap Z_0 = \emptyset$.

Assume that for all $\gamma < \beta$, $X_{\alpha} \cap Z_{\gamma}$ is finite for all α . If β is a nonlimit ordinal, $Z_{\beta} = Z_{\beta-1}$ and $X_{\alpha} \cap Z_{\beta-1}$ is finite by the induction hypothesis.

If β is a limit ordinal, then

$$Z_{\beta} = \bigcup_{n \geq 1} (Z_{\beta_n} - Y_{\beta_{n-1}}) \cup \bigcup_{n \geq 1} \{x : p_n^{\beta_n} \leq x < x_n^{\beta}\}$$

where $0=\beta_0<\beta_1<\cdots$ is a previously chosen sequence converging to β . If $\alpha \ge \beta$, $X_{\alpha} \cap Z_{\beta} = \emptyset$. Otherwise, there exists an integer i such that $\beta_i \le \alpha < \beta_{i+1}$. Then $X_{\alpha} \subset Y_{\beta_{i+1}}$. So

$$X_{\alpha} \cap Z_{\beta} = X_{\alpha} \cap \left[\bigcup_{n=1}^{i+1} (Z_{\beta_n} - Y_{\beta_{n-1}}) \cup \bigcup_{n=1}^{i} \left\{ x : p_n^{\beta_n} \leq x < x_n^{\beta} \right\} \right].$$

 $X_{\alpha} \cap Z_{\beta_n}$ is finite by the induction hypothesis for $n=1, \dots, i+1$. Each set of the form $\{x: p_n^{\beta_n} \leq x < x_n^{\beta}\}$ is totally ordered, so $X_{\alpha} \cap \{x: p_n^{\beta_n} \leq x < x_n^{\beta}\}$ contains at most one element for each $n=1, \dots, i$. So $X_{\alpha} \cap Z_{\beta}$ is finite.

LEMMA 2. If β and α are countable ordinals and $\beta < \alpha$, then $Z_{\beta} - Z_{\alpha}$ and $(Y_{\beta} - Z_{\beta}) \cap Z_{\alpha}$ are finite.

The proof is by induction on α .

If $\alpha=1$ and $\beta=0$, then $Z_0=\emptyset$ and $Z_1=\emptyset$ so $Z_0-Z_1=\emptyset$ and $(Y_0-Z_0)\cap Z_1=\emptyset$.

Assume that for all $\gamma < \alpha$, both $Z_{\beta} - Z_{\gamma}$ and $(Y_{\beta} - Z_{\beta}) \cap Z_{\gamma}$ are finite for all $\beta < \gamma$.

If α is a nonlimit ordinal, $Z_{\alpha}=Z_{\alpha-1}$ and by the induction hypothesis, for all $\beta < \alpha-1$, both $Z_{\beta}-Z_{\alpha-1}$ and $(Y_{\beta}-Z_{\beta}) \cap Z_{\alpha-1}$ are finite and, clearly, $Z_{\alpha-1}-Z_{\alpha}=\emptyset$ and $(Y_{\alpha-1}-Z_{\alpha-1}) \cap Z_{\alpha}=\emptyset$.

If α is a limit ordinal, let β' be the smallest ordinal less than α for which it is not known that both $Z_{\beta'}-Z_{\alpha}$ and $(Y_{\beta'}-Z_{\beta'})\cap Z_{\alpha}$ are finite.

If β' is a nonlimit ordinal, then $Z_{\beta'} = Z_{\beta'-1}$ and both $Z_{\beta'-1} - Z_{\alpha}$ and $(Y_{\beta'-1} - Z_{\beta'-1}) \cap Z_{\alpha}$ are finite by the choice of β' .

Suppose β' is a limit ordinal. By definition

$$Z_{\alpha} = \bigcup_{n\geq 1} (Z_{\beta_n} - Y_{\beta_{n-1}}) \cup \bigcup_{n\geq 1} \{x : p_n^{\beta_n} \leq x < x_n^{\alpha}\}$$

for a previously chosen sequence $0=\beta_0<\beta_1<\cdots$ converging to α . There exists an i such that $\beta_i\leq\beta'<\beta_{i+1}$ and then $Z_{\beta'}\subset Y_{\beta_{i+1}}$ and $Y_{\dot{\beta'}}-Z_{\beta'}\subset Y_{\beta_{i+1}}$. So

$$Z_{\beta'} - Z_{\alpha} = \bigcup_{n=1}^{i+1} [[Z_{\beta'} \cap (Y_{\beta_n} - Y_{\beta_{n-1}})] - Z_{\alpha}].$$

For $n=1, \dots, i$,

$$[Z_{\beta'} \cap (Y_{\beta_n} - Y_{\beta_{n-1}})] - Z_{\alpha} \subset [Z_{\beta'} \cap (Y_{\beta_n} - Y_{\beta_{n-1}})] - (Z_{\beta_n} - Y_{\beta_{n-1}})$$

$$\subset (Y_{\beta_n} - Z_{\beta_n}) \cap Z_{\beta'}$$

which is finite by the induction hypothesis. Also,

$$[Z_{\beta'} \cap (Y_{\beta_{i+1}} - Y_{\beta_i})] - Z_{\alpha} \subset [Z_{\beta'} \cap (Y_{\beta_{i+1}} - Y_{\beta_i})] - [Z_{\beta_{i+1}} - Y_{\beta_i}]$$

$$\subset Z_{\beta'} - Z_{\beta_{i+1}}$$

which is finite by the induction hypothesis. So $Z_{\beta'}-Z_{\alpha}$ is finite. Also,

$$(Y_{\beta'} - Z_{\beta'}) \cap Z_{\alpha}$$

$$= (Y_{\beta'} - Z_{\beta'}) \cap \left[\bigcup_{n=1}^{i+1} (Z_{\beta_n} - Y_{\beta_{n-1}}) \cup \bigcup_{n=1}^{i} \{x : p_n^{\beta_n} \leq x < x_n^{\alpha} \} \right].$$
For $n=1, \dots, i$,

$$(Y_{\beta'}-Z_{\beta'})\cap(Z_{\beta_n}-Y_{\beta_{n-1}})\subset Z_{\beta_n}-Z_{\beta'},$$

and

$$(Y_{\beta'}-Z_{\beta'})\cap(Z_{\beta_{i+1}}-Y_{\beta_i})\subseteq(Y_{\beta'}-Z_{\beta'})\cap Z_{\beta_{i+1}},$$

both of which are finite by the induction hypothesis.

Now let $1 \le n \le i$ and consider $(Y_{\beta'} - Z_{\beta'}) \cap \{x : p_n^{\beta_n} \le x < x_n^{\alpha}\}$. There is a point $y \in X_{\beta'}$ such that $p_n^{\beta_n} < y < x_n^{\alpha}$. Next, by definition of $Z_{\beta'}$, since β' is a limit ordinal, there are an ordinal $\gamma < \beta'$ and a point $z \in X_{\gamma}$ such that $Z_{\beta'} \cap \{x : x < y\} = \{x : z < x < y\}$. Then

$$(Y_{\beta'} - Z_{\beta'}) \cap \{x : p_n^{\beta_n} \le x < x_n^{\alpha}\} = \{x : p_n^{\beta_n} \le x < z\}$$

 $(=\emptyset \text{ in case } z \leq p_n^{\beta_n}, \text{ i.e., } \gamma \leq \beta_n). \text{ Since } \{x : p_n^{\beta_n} \leq x < z\} \subset Y_{\gamma} \text{ we have } \{x \in \mathbb{Z} \}$

$$(Y_{\beta'} - Z_{\beta'}) \cap \{x : p_n^{\beta_n} \le x < x_n^{\alpha}\} \subset [(Y_y - Z_y) \cup (Z_y - Z_{\beta'})] \cap Z_{\gamma}$$

which is finite, since by the induction hypotheses, both $(Y_{\gamma}-Z_{\gamma})\cap Z_{\alpha}$ and $Z_{\gamma}-Z_{\beta'}$ are finite. It follows that $(Y_{\beta'}-Z_{\beta'})\cap Z_{\alpha}$ is finite.

PROOF OF THEOREM 2. To show that $\bigcup_{x<\omega_1} \bar{Z}_x$ and $\bigcup_{x<\omega_1} \operatorname{cl}((Y_x-Z_x))$ are closed and disjoint in E_0 , consider Z_γ and $\operatorname{cl}(Y_\beta-Z_\beta)$ for γ , $\beta<\omega_1$. If $\gamma=\beta$, then $Z_\gamma\cap (Y_\gamma-Z_\gamma)=\varnothing$ so $\operatorname{cl}_{\beta D}Z_\gamma\cap\operatorname{cl}_{\beta D}(Y_\gamma-Z_\gamma)=\varnothing$ [6], and therefore, Z_γ and $\operatorname{cl}(Y_\gamma-Z_\gamma)$ are disjoint. If $\gamma<\beta$, $Z_\gamma\subset Y_\beta$ and $Z_\gamma-Z_\beta$ is finite by Lemma 2. So $Z_\gamma\cap (Y_\beta-Z_\beta)$ is finite, and hence $Z_\gamma\cap\operatorname{cl}(Y_\beta-Z_\beta)=\varnothing$. If $\beta<\gamma$, then $(Y_\beta-Z_\beta)\cap Z_\gamma$ is finite by Lemma 2, so $\operatorname{cl}((Y_\beta-Z_\beta))\cap Z_\gamma=\varnothing$. So $\bigcup_{\alpha<\omega_1} Z_\alpha$ and $\bigcup_{\alpha<\omega_1}\operatorname{cl}((Y_\alpha-Z_\alpha))$ are disjoint.

Next, these sets are open, since any set of the form \bar{A} is open. Finally, since they are complementary (*), they are also closed.

If $\bigcup_{\alpha<\omega_1} Z_{\alpha}$ and $\bigcup_{\alpha<\omega_1} \operatorname{cl}((Y_{\alpha}-Z_{\alpha}))$ can be separated in $\beta D-D$, then there exists a set $Z\subset D$ such that $Z\supset \bigcup_{\alpha<\omega_1} Z_{\alpha}$ and

$$Z \cap \left(\bigcup_{\alpha < \omega_1} \operatorname{cl}((Y_{\alpha} - Z_{\alpha})) \right) = \varnothing.$$

Then $Z_{\alpha} \subset Z$ and so $Z_{\alpha} - Z$ must be finite for all $\alpha < \omega_1$. Also if $Z \cap \operatorname{cl}((Y_{\alpha} - Z_{\alpha})) = \emptyset$ then $Z \cap (Y_{\alpha} - Z_{\alpha})$ is finite. Since $Y_{\alpha} = \bigcup_{\beta < \alpha} X_{\beta}$, $Z \cap (X_{\beta} - Z_{\alpha})$ must, for all $\alpha < \omega_1$, be finite for all $\beta < \alpha$. But since $X_{\beta} \cap Z_{\alpha}$ is finite by Lemma 1, $Z \cap X_{\beta}$ must be finite for all $\beta < \omega_1$.

I will complete the proof by showing that there is no set $Z \subseteq D$ with the properties described in the preceding paragraph.

Suppose there is such a set Z. Then for every countable limit ordinal α , since $Z_{\alpha}-Z$ is finite, there exists an $f(\alpha)<\alpha$ such that if y is the term of $X_{f(\alpha)}$ such that $y< x_1^{\alpha}$, then $\{x:y\leq x< x_1^{\alpha}\}\subset Z$. If α is a nonlimit ordinal, let $f(\alpha)=\alpha-1$ and let f(0)=0.

Then there exists $\gamma < \omega_1$ such that $f(\alpha) = \gamma$ for uncountably many α . For, if not, then $\{\alpha: f(\alpha) \leq \beta\}$ is countable for each $\beta < \omega_1$, and letting $C_0 = \{\alpha: f(\alpha) = 0\}$; C_0 is countable and has a supremum α_1 , $\alpha_1 > 0$. In general, let $C_n = \{\alpha: f(\alpha) \leq \alpha_n\}$; C_n is countable and has a supremum α_{n+1} , where $\alpha_{n+1} > \alpha_n$, since $\alpha_n + 1$ is in C_n . Then if α' is the limit of the sequence $\{\alpha_n\}$, and since $f(\alpha') < \alpha'$, $f(\alpha') \leq \alpha_i$ for some i, but then α' is in C_i and $\alpha' \leq \alpha_{i+1}$ which is a contradiction of the choice of α' .

Let q be a point of X such that $q < x_1^{\alpha}$ for uncountably many α 's such that $\gamma = f(\alpha)$. Let $W = \{x : q < x \text{ and } \{y : q < y \le x\} \subset Z\}$. Then W is uncountable by the choice of q. Let $A = \{x : q < x \text{ and there are uncountably many } z > x \text{ such that } \{y : q < y \le z\} \subset Z\}$. Observe that $A \subset W$. Also A is uncountable. Because if A is countable, then $A \subset Y_{\beta}$ for some $\beta > \gamma$, and if $x' \in X_{\beta}$, there are only countably many z > x' such that $\{y : q < y \le z\} \subset Z$. So $W - Y_{\beta}$ is countable, hence W is countable which is a contradiction.

For each $\alpha > \gamma$, let $n(\alpha)$ = the number of terms in $A \cap X_{\alpha}$. Then $n(\alpha)$ is

finite since $A \subseteq Z$ and $n(\alpha) > 0$ since A is uncountable. Pick n_0 so that for uncountably many $\alpha > \gamma$, $n(\alpha) = n_0$. Let α_0 be the first ordinal greater than γ such that $n(\alpha_0) = n_0$. Then for each ordinal $\alpha > \alpha_0$ such that $n(\alpha) = n_0$, define $F_\alpha: X_\alpha \cap A \to X_{\alpha_0} \cap A$ where $F_\alpha(y)$ is the term of X_{α_0} between q and y. Clearly $F_\alpha(y) < y$ for all α . If $y \in A$, there are uncountably many z > y such that $\{x: q < x \le z\} \subseteq Z$ and since $F_\alpha(y) < y$, there are uncountably many $z > F_\alpha(y)$ such that $\{x: q < x \le z\} \subseteq Z$, so $F_\alpha(y) \in A$.

I will now show that F_{α} is one-to-one. If $x \in X_{\alpha_0} \cap A$, there is a z > x, $z \notin Y_{\alpha}$ and $z \in A$. Then the term y of X_{α} between q and z belongs to A and $F_{\alpha}(y) = x$. So, since $X_{\alpha} \cap A$ and $X_{\alpha_0} \cap A$ each have n_0 terms, F_{α} is one-to-one.

Let $x_0 \in X_{\alpha_0} \cap A$. For each $\alpha > \alpha_0$ with $n(\alpha) = n_0$, let y_{α} be the unique term of X_{α} such that $x_0 = F_{\alpha}(y_{\alpha})$. Then $B = \{y_{\alpha}\}$ is a totally ordered subset of D, since if $\alpha_1 < \alpha_2$, then there is a term y of X_{α_1} between x_0 and y_{α_2} . But $F_{\alpha}(y) = x_0$; hence $y = y_{\alpha_1}$; so $y_{\alpha_1} < y_{\alpha_2}$. But since there are uncountably many α such that $n(\alpha) = n_0$, B is uncountable which is a contradiction.

So there is no set Z in D which separates

$$\bigcup_{\alpha<\omega_1} Z_{\alpha} \quad \text{and} \quad \bigcup_{\alpha<\omega_1} \operatorname{cl}((Y_{\alpha}-Z_{\alpha}))$$

in $\beta D - D$.

So if f is a function from E_0 to $\{0, 1\}$ such that $f^{-1}(0) = \bigcup_{\alpha < \omega_1} Z_{\alpha}$ and $f^{-1}(1) = \bigcup_{\alpha < \omega_1} \operatorname{cl}((Y_{\alpha} - Z_{\alpha}))$, then f is continuous on E_0 , but f has no continuous extension to $\beta D - D$.

COROLLARY. E_0 is not normal.

PROOF. For each limit ordinal $\lambda < \omega_1$, let $Q_{\lambda} = Y_{\lambda + \omega_0} - Y_{\lambda}$. Let $A = \bigcup_{\lambda < \omega_1} \operatorname{cl}_{\beta D} Q_{\lambda}$, then $D \subset A \subset \beta D$ so $\beta A = \beta D$. Pick $p_{\lambda} \in \overline{Q}_{\lambda}$. Then $D' = \{p_{\lambda}\}_{\lambda < \omega_1}$ is a discrete set in $\beta D - D$ of cardinality \aleph_1 and $D' \subset E_0$. D' is C^* -embedded in A, since to extend a function f from D' to A, assign the value $f(p_{\lambda})$ to each point of $\operatorname{cl}_{\beta D} Q_{\lambda}$. Therefore, $\operatorname{cl}_{\beta A} D' = \operatorname{cl}_{\beta D} D' = \beta D'$, and since $D' \subset \beta D - D$, so is $\beta D'$.

Let E_0' be the set of all points in $\beta D'$ which are limit points of countable subsets of D'. Then E_0' is a closed subset of E_0 . Applying Theorem 2 to E_0' , there is a continuous function g from E_0' to $\{0, 1\}$ which cannot be extended continuously to $\beta D' - D'$. Then g cannot be extended continuously to $E_0' \cup D'$ since $\beta(E_0' \cup D') = \beta D'$. Now, $g^{-1}(0)$ and $g^{-1}(1)$ are disjoint closed sets in E_0 . Suppose U and V are open in E_0 and $g^{-1}(0) \subset U$, $g^{-1}(1) \subset V$ and $U \cap V = \emptyset$. Then all but at most a finite number of elements of D' are in $U \cup V$, so g can be extended continuously to $E_0' \cup D'$, which is a contradiction to the choice of g, so E_0 is not normal.

COROLLARY. $E_6 \cup D$ is not normal.

PROOF. Since E_0 is closed in $E_0 \cup D$, $E_0 \cup D$ is not normal.

REFERENCES

- 1. W. W. Comfort and S. Negrepontis, Homeomorphs of three subspaces of $\beta N/N$, Math. Z. 107 (1968), 53-58. MR 38 #2739.
- 2. N. J. Fine and L. Gillman, Extension of continuous functions in βN , Bull. Amer. Math. Soc. 66 (1960), 376–381. MR 23 #A619.
- 3. M. E. Rudin, *Types of ultrafilters*, Topology Seminar (Wisconsin, 1965), Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N.J., 1966, p. 148. MR 35 #7284.
- 4. G. Kurepa, Ensembles linéaires et une classe de tableaux ramifiés de M. Aronszajn), Publ. Math. Univ. Belgrade 6 (1937), 129-160.
- 5. F. B. Jones, On certain well-ordered monotone collections of sets, J. Elisha Mitchell Sci. Soc. 69 (1953), 33-34. MR 15, 18; 1139.
- 6. L. Gillman and M. Jerison, Rings of continuous functions, The University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960, p. 86. MR 22 #6994.

DEPARTMENT OF MATHEMATICS, METROPOLITAN STATE COLLEGE, DENVER, COLORADO 80204