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A STRONGER  BERTRAND'S POSTULATE
WITH AN APPLICATION TO  PARTITIONS

ROBERT E.  DRESSLER1

Abstract. In this paper we give a stronger form of Bertrand's

postulate and use it to prove that every positive integer, except 1, 2,

4, 6, and 9, can be written as the sum of distinct odd primes.

Introduction. The purpose of this paper is to derive, in an elementary

manner, a stronger form of Bertrand's postulate and to use this stronger

form to prove the following:

Theorem. Every positive integer, except 1, 2, 4, 6, and 9 can be written

as the sum of distinct odd primes.

1. The stronger form. Bertrand's postulate states that if pn is the nth.

prime then pn+i<2pn for all n. Hardy and Wright [2, p. 343] give a proof

of this result due to Erdös and they mention that a modification of the

proof will show that pn+x<2pn—2 for all «>2. In fact, we note that one

can adapt the proof to show that for any positive integer k, there exists a

positive integer M such that pn+i<2pn —k if n>M. The result we need is

this:

Lemma.   pn+x<2pn—10 for all n>6.

Proof. We will sketch the proof by indicating the necessary modifi-

cations in the proof which appears in [2] and we will use the same notation

as [2].

To begin with, assume there is some integer «2:1000 such that there is no

primeur satisfying n<q<2n—10. For the binomial coefficient N=(2£lx™)

and any prime p,

00        /

■<,= !{

m=l   \

2n - 10' n n - 10

where kp is defined to be the largest power of p which divides N. For
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(2/3)«</7^n we have kp=0 except for at most 3 primes p with n—9^

p^n—5 where kv is 1. So

2 log p g   2   lo8 P + 3 loS " < (4/3)" log 2 + 3 log n.
ulA' j>á(2/3)n

Also,

2 fc, log p£(2n- 10)1/2log(2n - 10).
i*ä2

Thus

(*) log A7 ̂ |n log 2 + 3 log « + (2n - 10)1/2log(2n - 10).

But

2«„-io) ̂  (2n _ 10)/2« - 10\
\ n — 5 /

- (2„ - 10)N(     "(" - IXn - 2Xn - 3Xn - 4)     N

\(b - 5)(n - 6)(n - 7)(n - 8)(n - 9)/

Taking logarithms of both sides and then applying (*) gives us a con-

tradiction. We then check the prime tables for «<1000 to obtain our

result.

2. Proof of the theorem. We first notice that from direct calculation we

have that if «^23 and «#1,2, 4, 6, 9 then n can be written as the sum of

distinct odd primes. Suppose for some «>23, the conclusion holds for all

m<«, «Jt^I, 2, 4, 6, 9. Let/7 be the largest prime ^«. Then write «=/?+

(n-p).

Case I. If «—/7?í 1, 2, 4, 6, 9 then we are done by the lemma and the

induction hypothesis, since by Bertrand's postulate it follows that p>

n—p and so p cannot be a summand in any partition of«—/?.

Case II. If « —p = 1 then write « <=px+(p —pi +1 ) where px is the largest

prime </7. Then we have/7— px+ \<.px—9 by the lemma. Also/»—px+\

is odd and hence #2,4, 6, and we are done if/7—/>x+1 #9. If/7—pi+l =9

then write «=/?2+(/>i—/?2+9) where /?2 is the largest prime <pv We have

px—p2+9<p2— 1 by the lemma and since/71—/72+9>9 we are done by the

induction hypothesis.

Case III. If n—p=2 then write n=p1+(p—p1+2). Now 4^p—px+

2<pi—8 and/7—/7J+2 is even so we are done unless/7— /?1+2=4 or 6. If

p— /7j-f2=4 write n=p2+(pi—p2+4) and we have 8S/7j— /?2+4</?2—6

(because p2<px—2). But /7j—/?2+4 is even (and hence #9) and we are

done. If px— /72+2=6 then write «=p2+(/?i—.P2+6) and we have 10^

px—/72+6</72—4 so we are done.
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Case IV. If n— p=A then write n=px+(p—px+4). We then have

6 ̂ p—/>i4-4<px—6. Sincep—pi+4 is even we are done unless/»— px+4=

6. If this is the case, write n=p2+(px—p2+6). Now 8^px—p2+6<p2—4.

Also />!—p2+6 is even (and hence ^9) and we are done.

Case V. If n—p—6 then write n=px-r-(p— px+6). We have 8^/>—

Fi+6</>!—4 and since/;— px+6 is even (and hence 5^9) we are done.

Caje VI. If n—p=9 then write n=px+(p— px+9). We have 9<p—

px+9<px—\ and we are done.
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