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CATEGORICAL  SEMIGROUPS

F.  R.  MCMORRIS AND M.  SATYANARAYANA

Abstract. The main purpose of this paper is to describe some

properties of categorical semigroups, commutative semigroups

which are categorical at zero, and determine the structure of com-

mutative categorical semigroups. We also investigate whether

Petrich's tree condition, for categorical semigroups which are

completely semisimple inverse semigroups, is necessary for ar-

bitrary categorical semigroups.

Introduction. An ideal A of a semigroup 5 is categorical if abceA

(a, b, ceS) implies abeA or bceA. If S=S° and 0 is a categorical ideal, then

5 is categorical at zero. If every ideal of 5 is categorical, then 5 is called a

categorical semigroup.

W. D. Munn [2] and M. Petrich [4] have found that the concept of

categorical ideals plays an important role in the theory of partial

homomorphisms, extensions of inverse semigroups, and O-restricted

homomorphic images of inverse semigroups. Petrich has shown that a

completely semisimple inverse semigroup 5 is categorical if and only if the

set of idempotents E(S) of 5 is a tree. However, we show that there

exist regular categorical semigroups in which 75(5) is not a tree.

In this paper, we initiate the characterization of arbitrary categorical

semigroups by focusing our attention on the commutative case. In the

first section we prove that if 5 is a commutative categorical semigroup,

then E(S) is a tree.

In 2.2, we obtain that a commutative semigroup which is categorical at

zero is the 0-direct union of two categorical ideals, and in 2.5, 2.6, and

2.7 we determine a relationship between being categorical at zero and having

zero divisors.

Finally in §3, we prove that a commutative semigroup is categorical if

and only if it is an extension of a regular categorical semigroup by a null

semigroup.

All terminology not given here can be found in [1].
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1. Categorical semigroups.

Theorem 1.1. Let S be a semigroup with identity. Then the following are

equivalent.

(i) 5 is categorical;

(ii) 5 is a union of simple semigroups, and the ideals of S form a chain

under set inclusion.

Proof. It is easy to see that if 5 has an identity, then an ideal A of 5 is

categorical if and only if A is prime. Hence the result follows from

Theorems 5.1 and 5.2 of [3].

Corollary 1.2. A commutative semigroup S with identity is categorical

if and only if S is a union of groups in which the ideals form a chain under set

inclusion.

Example 1. A semigroup without identity may contain a categorical

ideal that is not prime. Let 5=(a) be the infinite cyclic semigroup generated

by a. Then the ideal generated by a2 is categorical but not prime.

The set of idempotents E(S) of the semigroup 5 is said to form a tree if

for any e,f, geE(S), erfand e^g implies that either f^g or g^f, where

_ is the natural partial order on E(S). One of the striking results for

categorical semigroups is a result of Petrich (Theorem 2 of [4]) which

states that a completely semisimple inverse semigroup is categorical if and

only if its idempotents form a tree.

Example 2. The right zero semigroup of order two with identity

adjoined is an example of a regular categorical semigroup in which E(S)

is not a tree.

We shall now prove that this tree condition is necessary for some other

classes of semigroups.

First we recall some notation. If 5 is a semigroup and aeS, we let J(a)

be the principal ideal generated by a, and Ja={beS:I(a)=J(b)}. There is a

partial order on the ji-'-classes given by ya_/6 if and only if J(a)<^J(b).

Proposition 1.3. Let S be a categorical semigroup in which the idem-

potents commute. If for any e,feE(S), e<f implies that Je<Jf, then E(S) is

a tree.

Proof. Assume E(S) is not a tree. Then there exists e,f, geE(S) such

that £>/and e>g, while/and g are incomparable. Since the idempotents

commute, fg is an idempotent with f>fg and g>fg- Now fegeJ(fg) but

feéJ(fg) and eg^J(fg) by hypothesis. This contradicts the fact that 5 is
categorical. Hence E(S) is a tree.
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Corollary 1.4 (Necessity of Theorem 2 in [4]). Let S be a categorical

semigroup that is a completely semisimple inverse semigroup. Then E(S) is a

tree.

Proof. It can easily be shown that if S is a completely semisimple semi-

group, then e,feE(S) and e</imply that Je<Jf-

Corollary 1.5. Let S be a categorical semigroup. If the idempotents of

S commute and every right ideal of S is two-sided, then E(S) is a tree.

Proof. Let e,feE(S) with e<f. Then clearly we have Je^Jr Assume

J,=Jf Then feI(f)=J(e)^eS, the inclusion holding since eS by assump-

tion is a two-sided ideal. Therefore ef=f which implies the contradiction

f^e. Hence Je<Jf and we may apply the theorem.

Corollary 1.6. If S is a commutative categorical semigroup, then E(S)

is a tree.

We recall that a commutative semigroup is regular (inverse) if and only

if it is a semilattice of groups, and this is true if and only if it is a com-

pletely semisimple inverse semigroup. Hence using Petrich's result, the

converse of 1.6 is true if we add on the condition that S is regular. In fact,

we note that a commutative regular semigroup is categorical if and only if

it is a tree of abelian groups.

Example 3. If S is a commutative semigroup and E(S) is a tree, then S

need not be categorical. Let S={a, a2, a3, a4} be the cyclic semigroup of

index 3 and period 2. Then E(S)={a*} is a tree but {a3, a*} is an ideal that is

not categorical.

If S is a regular semigroup, not necessarily commutative, and E(S) is a

chain, then we prove in 1.7 that S is a categorical semigroup. It is open as to

whether this result is true if "chain" is replaced by "tree".

Proposition 1.7. Let S be a regular semigroup in which E(S) is a chain.

Then S is a categorical semigroup. In fact, every idea! of S is prime.

Proof. Since a prime ideal is categorical it suffices to show that every

ideal is prime. Let / be an ideal and abel with a, beS. Since S is regular,

there exist x, yeS such that a=axa and b=byb with xa, byeE(S). Thus

xa^by or by—^xa. Assume xa^by. Then (xa)(by)=xa and we have

aby = (axa)(by) = a(xa)(by) = axa = a.

This implies that ael since abel. Similarly by^xa implies  that  bel.

Hence / is prime.

2. Commutative semigroups which are categorical at zero. Throughout

this section we consider semigroups with zero.
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Lemma 2.1. If S is a commutative semigroup which is categorical at

zero, then the following are true.

(i) Every nonzero nilpotent element of S has index two.

(ii) IfxeS is nilpotent, then xs=0for all seS.

(iii) If xexS for every xeS, then S contains no nonzero nilpotent

elements.

Proof. Let xeS be a nonzero nilpotent and « the least positive integer

such that xn=0. Assume «>2. Then xx"~2x=0 implies xn_1=0, a con-

tradiction. To prove (ii), let xeS be nilpotent and seS. Then 0=xs =xsx,

which implies X5=0. Clearly (iii) follows from (ii).

Theorem 2.2. Let S be a commutative semigroup which is categorical at

zero. Then S is the 0-direct union of two categorical ideals N and LuO,

where N is the set of nilpotent elements and L = {x:x5í¿0}. Furthermore,

NS=0 and LuO is a subsemigroup of S which is itself categorical at zero.

Proof. From 2.1, we need only show that LuO is a categorical ideal

and that N is categorical. To prove that LuO is an ideal, it suffices to show

that x,yeS and xyeN imply xy=0. If xyeN, then xjyx=0 by (ii) of 2.1.

Hence xy=0 since 0 is categorical.

Now let aèceLuO where a, b, ceS. If abc=0, then ab=0eLu0 or

Ac=0eLu0. If abc^O, then we assert that a, b, ceL. For instance if a$L,

then aeN and by (ii) of 2.1 we would have a(bc)=0. Therefore abeLuO

and we have that LuO is categorical.

To show that N is categorical, let abceN. As before, this implies that

abc=Q. Hence ab=0eN or bc=0eN.

Corollary 2.3. Let S be a commutative semigroup which is categorical

at zero and such that S=S2. Then either S is a null semigroup or S has no

nonzero nilpotent elements.

Proof. Assume 5 not a null semigroup. Then 5=#UL with L non-

empty. Since 5= 5a, ^=0, and 7VL=0, we have /VuL=L2. Hence

7VÇL2£LU0 and thus jV=0.

We note that since the 0-direct union of semigroups categorical at zero is

also categorical at zero, Theorem 2.2 reduces the study of commutative

semigroups categorical at zero to those having no nilpotent elements.

Example 4. The converse to 2.2 need not be true. Let 5 be the semi-

lattice {1, e,f. 0} where 1 is the identity, 0 is the zero, and ef=fe=0. Then

5=A/uL as in 2.2, but 5 is not categorical at zero since el/=0 with e^O

and/5¿0.
The 0 of a semigroup is said to be indecomposable if and only if the inter-

section of two nonzero ideals is nonzero.
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Proposition 2.4. Let S be a commutative semigroup which is categorical

at zero. IfO is indecomposable, then

(i) There are no nonzero nilpotent elements, and for every nonzero

xeS, there exists yeS such that xy^O, or

(ii) S is the null semigroup of order two.

Proof. Let S=NuL as given by 2.2. Now /Vn(LuO)=0 implies that

N=0 or LuO=0. If A=0, then 5=Lu0 and we have (i).

If L u0=0, then N=S. Assume 5" contains two distinct nonzero elements

a and b. This implies {0, a} and {0, b} are nonzero ideals intersecting at 0,

which is a contradiction. Thus (ii) follows in this case.

If a semigroup has no zero-divisors, then evidently S is categorical at

zero. However the semilattice {e,f 0} with ef=0 is categorical at zero

having zero-divisors.

The following is evident.

Proposition 2.5. Let S be a commutative semigroup with identity. Then

S has no zero-divisors if and only if S is categorical at zero.

Theorem 2.6. Let S be a commutative semigroup in which the ideals

form a chain under set inclusion. Then S is categorical at zero if and only if

S has no zero-divisors or S is the null semigroup of order two.

Proof. Assume S is categorical at zero and S=N\jL as in 2.2. Since

the ideals form a chain, we have TVsLuO or LuOç/v*. Thus S=N or

S=Lu0. If S=N, then S is the null semigroup of order two as in 2.4,

since the fact that the ideals form a chain implies that 0 is indecomposable.

Let S=LuO. Assume xj=0 for some x, yeL. Let xR and/** denote the

annihilators of x and y. Hence xR£yR or yR^xR. In the first case,

yexR implies yeyR and thus y2=0. This contradicts the fact that. L con-

tains no nonzero nilpotent elements. Similarly the second case implies a

contradiction. Therefore 5 has no zero-divisors.

The converse is obvious.

By noting that the ideals form a chain in a commutative semigroup in

which every ideal is principal [5], we have the following.

Corollary 2.7. Let S be a commutative semigroup in which every ideal

is principal. Then S is categorical at zero if and only if S has no zero-

divisors, or S is the null semigroup of order two.

3. Commutative categorical semigroups.

Proposition 3.1. Let S be a commutative categorical semigroup. Then

the following are true.

(i) IfaeS, then a2=a3 or a2=a3xfor some xeS.

(ii) /// « an ideal ofS, then P=P.
(iii) S contains idempotents.
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Proof, (i) If aeS, then a3ea3Ua3S. Since a3Ua35 is categorical, we

have a2ea3Kja3S.

(ii) Let a, bel. Then abael3, which implies that abel3 since I3 is cate-

gorical. Thus /2£/3 and hence P=P.

(iii) Let aeS. Then (i) implies a2=a3 or a2=a3x for some xeS. In the

first case, a2eE(S). If a2=a3x, then

(a2x2)(a2x2) = (a3x)(ax3) = a2(ax3) = a3x3 = (a3x)x2 = a2x2.

Hence a2x2eE(S).

Theorem 3.2. Let S be a commutative categorical semigroup containing

a cancellable element. Then S contains an identity and S is regular.

Proof. Let xeS be cancellable and beS. Since x2S is categorical and

xbxex2S, we have xbex2S. Thus xb=x2y for some yeS, which implies

that b=xy. Therefore S=xS. Now x—xt for some teS and we assert that

t is the identity for S. Let s=xz (zeS) be an arbitrary element of S. Then

st = (xz)t = (xt)z = xz = s.

From 1.2, we have that S is regular.

Noting that a cancellative semigroup can contain at most one idem-

potent, we have the following.

Corollary 3.3. A commutative cancellative categorical semigroup is a

group.

Lemma 3.4. Let S be a commutative categorical semigroup. Then for

any a, beS, there exists xeS such that ab=a2x.

Proof.    We have a2bea2S and a2S is categorical. Hence abea2S.

Proposition 3.5. Let S be a commutative categorical semigroup. Then

S2 is categorical.

Proof. Let A be an ideal of S2. It suffices to prove that A is an ideal of

S. Let aeA and seS. From 3.4, there exists xeS such that as=a(ax)e

AS2^A.

Theorem 3.6. Let S be a commutative semigroup. Then S is categorical

if and only if S is an extension of a regular categorical semigroup by a null

semigroup.

Proof. Assume S is categorical. From 3.5 and the fact that the Rees

factor semigroup SjS2 is a null semigroup, we need only prove that S2 is

regular. We show that the Jt -classes of S2 are groups and hence S2 is a

union of groups.
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Let a, beS. Then a2beabS, which implies that abeabS. We assert that

Hah, the Jf-class containing ab, is a group. Now there exists xeS such that

ab=abx. From 3.4, abx=(ab)2y from some yeS. Thus ab=(ab)2y which

implies that (ab)2eHah. Hence 77ai, is a group by Theorem 2.16 of [1].

For the converse, let 7 be a regular categorical subsemigroup (ideal) of

5 such that 5/7 is null. Let A be an ideal of 5 and abceA with a, b, ceS.

Since 5/7 is null we have ab, bcel. I is regular so there exist x, yel such that

(ab)x(ab)=ab and (bc)y(bc)=bc. Now AI is an ideal of 7 and is therefore

categorical in 7. Since abceA, we have that a2b2c2eAI with a2, b2, c2el.

Therefore a2b2eAI or b2c2eAI. If a2b2eAI, then ab=a2b2xeAIçA. Simi-

larly b2c2eAI implies that bceA. Therefore A is a categorical ideal of 5.
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