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A LOWER BOUND FOR THE PERMANENT
OF A (0, 1)-MATRIX!

P. M. GIBSON

ABSTRACT. Let A=(a;;) be an n-square fully indecomposable
(0, 1)-matrix. It is shown that if each row sum of A is at least & then
per AZ>F 1 a;—2n+24+ 3571 (m!—1). This improves an
inequality obtained by H. Minc.

Lower bounds for the permanent of a (0, 1)-matrix are of considerable
combinatorial interest. A well-known theorem of M. Hall [1] states that
if A is an n-square (0, 1)-matrix with positive permanent and at least k
positive entries in each row, then per A=k!. Recently H. Minc [3] proved
that if 4 is an »n-square fully indecomposable (0, 1)-matrix then per A2
o(A)—2n+2, where a(A) is the sum of all entries of 4. In this note we
show that Hall’s inequality can be used to improve Minc’s inequality.

Let A=(a;,) be an n-square matrix. Let A*” be the n-square matrix
obtained from 4 by replacing ay,, by 0, let r(4) denote the minimal row
sum of A4, and let 4,,, be the (n—1)-square submatrix of 4 that remains
after row k and column m are removed. If 4 contains an s X (n—s) zero
submatrix, for some 1=s<n—1, then A is partly decomposable; other-
wise, A is fully indecomposable. If A4 is fully indecomposable, while A*™
is partly decomposable whenever ay,, 0, then A4 is nearly decomposable.

THEOREM. If A is an n-square fully indecomposable (0, 1)-matrix with
r(A)zk, then

k=1
(1) per A = o(A) — 2n 4+ 2 + D (m! — 1)
m=1
Proor. The proof is by induction on k. If k=1 or 2, then this state-
ment follows from Minc’s inequality. Suppose that it holds for all 1<k,
where k=3, and let A=(a,;) be an n-square fully indecomposable (0, 1)-
matrix with r(4)=k. Since r(4)=3, it follows from Hartfiel’s form for
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nearly decomposable matrices [2] that A is not nearly decomposable.
Hence, there exist 7, je{l, - - -, n} such that a;;=1 and A% is fully inde-
composable. Since r(4)=k—1 and o(4")=0g(4)—1, the inductive
assumption implies that

k=2
) per AV 2 o(A) — 1 —2n + 24 > (m! —1).

m=1
Since A is fully indecomposable, per 4;;>0. Hence, since r(4;)=k—1,
Hall’s inequality implies that

3) per Ay = (k — L.

Since a,,=1, per A=per A" +per 4,;. Combining this with (2) and (3),
we have (1).

Let A% be the set of all n-square {0, 1)-matrices with precisely k positive
entries in each row and each column. Minc [3] showed that if A A%, then
per A=n(k—2)+2. Hartfiel [2] discovered that if A€A’ then per 4=
n+-3. Using our theorem it is easy to prove the following.

COROLLARY. If A€AY, then

k=1
perdZn(k —2) + 2+ > (m! —1).

m=1
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