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THE  GRAPH  EXTENSION  THEOREM1

erhest shult

Abstract. A sufficient condition is given that a transitive

permutation group G admits a transitive extension C*. The con-

dition is graph-theoretic and does not involve any direct algebraic

properties of the group being extended. The result accounts for a

fairly wide class of doubly transitive groups, including the two

doubly transitive representations of the groups Sp(2n, 2), and the

doubly transitive representations of the Higman-Sims group, and the

Conway group (.3).

The theorem given below gives a sufficient condition for the existence

of certain doubly transitive groups. All known doubly primitive groups

which are not triply transitive (with the exception of PSL(2,^), q = l

mod 4, acting on 1 A-q letters, and PSL(2, 11) acting on 11 letters) occur by

virtue of this theorem. Included in this list of groups are groups involving

doubly transitive representations of two recently discovered sporadic

simple groups: the Higman-Sims groups acting on 176 letters and the

Conway group (.3) acting on 276 letters.

Graph extension theorem.    Let il be an undirected graph without loops.

Set G = Aut(í¿), the automorphism group of il.

Assume the following:

(a) G transitively permutes the vertices of il.

(b) Given some vertex x in LI. let Y denote the set of vertices of il which

are arced to x and let X = ii — (Fu¡x¡). Then there exist maps A1:I,-*T,

and h.,:2Z~>ü such that the h¡ induce automorphisms on Y and ~, viewed as

subgraphs of LI, and such that if a e Y and b ell. a is arced to b if and only

ifhi(a) is not arced to hA(b).

Then there exists a doubly transitive group Gn acting on |Í2| + 1 letters,

such that the subgroup fixing a letter acts on remaining letters in a manner

permutation—isomorphic to G acting on the vertices of LI. (In other words,

G0 is a transitive extension of G.)
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Proof. Let Í2 and il' denote two isomorphic copies of the graph il,

and use z' to denote the element in il' which corresponds to the element

z e il, under this isomorphism. We define a new graph Q* whose vertices

are {ajUÛUÛ'ufa'j. The vertex a is arced to every vertex of il, the

vertex a.' is arced to every vertex of Q', and il and il' are to be subgraphs

of D*. Finally if a e il, and b' e il', then a is arced to b' if and only if a is

not arced to b in il. We have defined the arcs of Q* and it is clear that il*

is a graph in which every vertex is arced to ¡Q| other vertices.

Set C7*=Aut(Q*). Clearly, automorphisms of il can be extended to

automorphisms of Q* leaving both a and x' fixed. Thus we have an em-

bedding e:G—<-G*. Fix the vertex x eil and form the decomposition il=

{x}uruS where V is the subgraph of Q whose vertices are all arced to

vertex x, and X is the subgraph whose vertices are il— (Fu{x)). Let V

and 27 be the corresponding subgraphs of Q'. We define an automorphism

tx as follows: (a) tx transposes a and x and transposes a' and x'. (b) tx

stabilizes T and induces the mapping hx on T. Similarly, tx stabilizes V

and tx(b')=(hi(b))' for all b' e V. (c) If a e I. tx(a)=h2(a)'. Similarly, if

a' e S', then set tx(a')=h2(a). Thus tx interchanges the sets X and £'. It is

easy to check that tx is an isomorphism of Q*. Since e(G) acts on the

vertices of il* with orbits {a}, il, il' and {a'}, it follows that H=(e(G), tx)

transitively permutes the set X of "antipodal" pairs {(a, d)\a e {a} UÍ2}.

Thus |Af] = H-|Q|, H is transitive on X and its subgroup e(G) fixes the

pair {(a, a')} and is transitive on the remaining pairs {(x, x')\x e il}.

Thus H is doubly transitive on X.

Clearly, the mapping transposing members of each antipodal pair is a

central involution t in G* and together with the identity comprises the full

kernel of the action G * on X. It follows that (t, e(G))~Z2 x e(G) is the full

stabilizer in G* of a point in X. Thus G0=G*/(f) is a doubly transitive

group on A'satisfying the conclusion of the theorem. (Note that G* = H

if il is not a complete graph.)

We conclude with some examples. In each case we identify the initial

graph il, and the "arc-breaking" map /i1x/¡2:rxL->-rxE.

Example 1. The symmetric groups. Let Í2 be the graph having n

vertices and no arcs. Then T is empty, and so T x S is empty. Thus there

are no arcs to break, and we may take /i2 to be the identity map on 2. Then

Q* consists of two sets A = a.uQ.' and B=ol'uQ. each consisting of n+\

vertices and no arcs. There is a 1-1 correspondence between A and B such

that each vertex in one set is arced to every vertex in the other except the

one corresponding to it. Although we must contend in this example with

the artificiality that the mapping «, and hence /ij x «2 have empty domains,

nonetheless the automorphism tx of D* defined in the proof of the
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theorem exists, forcing G*=Aut(Q*) to be doubly transitive on the set

X of antipodal pairs in il*. Indeed tx induces a single 2-cycle on X.

Example 2. Groups involving PZL(2, a) acting on 1 +q letters, q= 1 (4).

Let Q denote the multiplicative group of nonzero squares in the field

GF(<?), <7= 1 mod 4. Let the vertices of il be the elements of GF(^) and let

x be arced to y if and only if x—y e Q. Since — 1 is a square, x—y e Q

implies y—x e Q, so that the arc relation is symmetric. Clearly, the group

5 of semilinear substitutions of the form g(<x, ß, o):x->xx''+ß where

a 6 Q, ß e GF(q), a e Aut(GF(<7)), is a group of automorphisms of the

graph il. We isolate the vertex represented by zero, and we set Y = Q and

Z = GF(<7) — (Ou{0}) the set of nonzero nonsquares. Let hx and h2 be the

restrictions of the mapping x—>-(l/x) to O and Z respectively (this is possible

since the reciprocal of a square is a square). Let x and y be distinct nonzero

elements of GF(^). If x andjy are either both squares, or nonsquares, then

xy is a square. In that case x—y—a and (\\y)—(\\x)=a\(xy) are either

both squares or both nonsquares. On the other hand, if only one of x and

y is a square, xy is a nonsquare, and so only one of x— y=a and (l/_y) —

(l/x)=a/(xy) is a square. Thus hi and h2 induces automorphisms of the

subgraphs Y and S, and hiX/u interchanges the set of arcs and the set of

nonarcs in Y x S.

The doubly transitive groups G0 which arise here contain PSL(2, q) as

a doubly transitive group on 1 +q letters, where PlL(2, q) denotes the

semidirect product PSL(2,ç) and the group C of automorphisms of

PSL(2, q) induced from the group of field automorphisms. The assertion

that C70~PSL(2, q) is equivalent to stating that the full automorphism

group of the graph ii given above coincides with (and is permutation

isomorphic to) the group 77 of semilinear transformations of the form

x -> ax" + ß

where a e Aut(GF(^)), ß e GF(q) and a is a nonzero square. Whether

Aut(Q) is isomorphic to H or is larger seems to be an open question,

although certain cases can be handled. In this connection, see reference [3].

Example 3. Doubly transitive representations of Sp(2/i, 2). Let the

vertices of il be the set of singular vectors in either one of the two non-

degenerate orthogonal geometries on the 2/i-dimensional vector space over

GF(2). Arc two singular vectors if they are perpendicular, with respect to

the induced symplectic form. Selecting a vector u, we let Y be all singular

vectors distinct from u which are perpendicular to w. Then S is the set of all

singular vectors having inner product 1 with u. Let /¡, be translation by the

vector u (this stabilizes Y) and let h., represent the identity mapping on S.

Then hx and ht satisfy the hypotheses of the theorem. The doubly transitive

groups obtained can easily be shown to be the groups Sp(2«. 2). Because
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of the way hx and h2 are defined, there exist involutions in these doubly

transitive groups, fixing a relatively large number of letters. (For example

Sp(6, 2) is doubly transitive on 28 letters and contains an involution fixing

16 of these letters.)

Example 4. 77ie semidirect product of Sp(2«, 2) and the additive

groups of its vector space. Let the vertices of Q be the nonzero vectors in a

nondegenerate symplectic space of dimension 2«, over the field of two

elements. Arc two vectors if they are not equal but are perpendicular.

Select a vector u e il, set r=ttJ-OÜ—{«} and S=fí-(ru{«}). Letflj be

translation of elements of T by the vector u (this induces an automorphism

of the subgraph T) and let h2 be the identity mapping on S. Then, as in the

previous example, «j and h2 satisfy the hypotheses of the theorem.

Example 5. The Higman-Sims group. Let 5 be the graph with 50

vertices defined from the orbital of size 7, as the simple group £/(3, 5) acts

as a rank-3 permutation group on the cosets of a subgroup isomorphic to

A7. The graph S contains 175 arcs, no triangles, and no quadrilaterals.

Two distinct arcs in 5 bear one of three relationships: (A) they have a

common vertex, (B) they do not have a common vertex and are arcs in a

unique pentagon, (C) they lie in no pentagon, and lie in exactly two

hexagons, forming there, opposites sides of the hexagon.

Now we define the graph il. The vertices of Q are the arcs of S. Two

vertices of il are arced in il if and only if they represent two arcs of S

in the relation (B). Each vertex in il is arced to 72 other vertices; Q has

diameter 2.

Fix a vertex v in il which represents the arc (ab) in S. We may re-

define the graph S in the following way. The alternating group on six

letters has two conjugate classes Cx and C2 of subgroups isomorphic to the

alternating group on 5 letters. We label the twelve arcs in S which have a

common vertex with (a, b) as {(a, x)\x e Cx}'U{(b, x)\x e C2}. Thirty-six

further vertices remain in S and we identify these with the set A of 36

5-Sylow subgroups of A%. If R e A, we form an arc (X, R), X e C¿, if and

only if R is a subgroup of X. Now each 5-Sylow subgroup lies in just one

group from Cx and one from C2. The pairs (X, R) define 72 arcs in the

relation (B) to (a, b). Finally, two 5-Sylow subgroups Rx and R2 are arced

if they do not lie in a common subgroup in Cx or C2 and if there exists an

involution in Ae normalizing both Rx and R2. This defines a system of 90

arcs, all with vertices in A.

Let T be the vertices in Q arced to t-—i.e. they represent 72 arcs in the

relation (B) to (a, b). Each has the form u=(X, R) where Xe CxuC2. If

X e C, it also is true that R lies in a unique member X' of Cx uC2—C¿ so

that u has a "twin" u'=(X', R) which is also one of the 72 arcs of S re-

presented by vertices in T. Define«, : r-»T by u-*u', so hx is an involution.
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Each involution / in Ae normalizes exactly four 5-Sylow subgroups, 7?,,

R2, R3, R4, where (Rx, R, . R3, 7\4 are elements of C,. and /?,, 7?4 ,

\R„, 7?3 are elements of C2 and (/?,, 7\3) and (/?.,, R}) are arcs of 5. Thus

the 4 points of A fixed by t yield 2 nonmeeting arcs. Conversely given an

arc (/?,, Rj) there exists only one involution t in /f6 normalizing both 7?,

and Rj and so there is a "twin" to this, (R'¡, R'j), also fixed by t. Then

/:(7v,, Rj)-*(R'{, R',) is a well-defined involutory mapping on the set £j of

90 arcs in relation (C) to (a, b). Finally let X, be the 12 arcs which meet

(ab) so that S = S1-|-Iio. Define /i2:2-*Z by letting /;2 be the identity

mapping on X2 and the mapping/on X2. Then it can be shown that h2 is

an automorphism of the subgraph X, hx is an automorphism of the

subgraph Y, and that /¡,x/i2 exchanges all arcs and nonarcs in FxS.

Thus the conditions of the graph extension theorem hold for the graph LI.

Although, it is a somewhat tedious verification the group G0 which

arises must be the Higman-Sims simple group. This is achieved by first

showing (a) that Aut(Q)~P-l'(3, 5) (i.e. the relation of graphs 5 and il

is tight enough that no automorphism group of Ll which is rank-3 on its

vertices is possible), (b) that in G0 there is an involution t interchanging

two letters a and ß which centralizes the subgroup fixing both at and ß,

and that the action of t on il — ß is unique, and finally, (c) action of a

corresponding involution from the Higman-Sims group either agrees with

the action of t in (b) or else fixes more letters than can be allowed from the

character table of the Higman-Sims group. (For a description of this

permutation representation see [2].)

Example 6. The Conway Group (.3). Let C denote the simple Conway

group (.3), and let Mc denote its simple subgroup of index 276, the

McLaughlin simple group [1], [4]. C is doubly transitive on a set U of 276

letters, with Mc=C^, the subgroup fixing letter a. Mc is a transitive rank-3

permutation group on the remaining 275 letters Ll=U— {a}, with sub-

degrees 1, 162, 112. The subgroup of Mc fixing a letter ß in il is the group

CXß~U (3. 4). We construct a graph from il and Mc using the orbital of

length 162. Thus in the graph Q. ß is arced to a set F of 162 vertices, and

fails to be arced to a set S of 112 points. It is well known [4] that Mc acts

on TxE in two orbits O and 0' of equal length and that (x,y) e TxZ

is an arc in Q is and only if (x, y) e O. Let s be an involution in Mc. Then

s fixes a subgraph Cn(s) of 35 points. We assume without loss of generality

that ß e Cu(s). Then Ci[e(s)l(s)c¿yi, the symmetric group on 8 letters, acts

faithfully on Ca(s) as a rank-3 permutation group on 35 letters with sub-

degrees 1-18-16. Let / be an involution in C conjugate to s which inter-

changes a and ß. Without loss of generality it may be assumed that /

centralizes5. Then Cc(s)=(t, CMc(s)) is doubly transitive on the 36 letters

auC¡¡(j). Indeed, Cc(i)/(j)~Sp(6, 2) and this transitive extension of ys
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on 35 letters arises from Example 3 above. As a consequence, t exchanges

the set of arcs and the set of nonarcsin the 18 x 16 pairs Cr(s)xC±(s). Thus

(/, U) is transitive on TxS, and exchanges the orbits O and O'. Thus if

«: = /|r and h2=t\^; the hxxh2 possesses the "arc-breaking" condition of

the graph-extension theorem. An examination of subdegrees of the action

of U on r and S respectively show that graph-theoretic boundaries in these

subgraphs represent orbitals of unique length. Thus t acts on V and S by

preserving arcs in these subgraphs, whence /îj e Aut(r) and /¡2 e Aut(S)

as required. Thus (il. hx, lu) fulfills the hypotheses of the graph extension

theorem.

In the above examples, just enough details have been presented to show

that a graph involved satisfies the conditions of il in the graph-extension

theorem. The actual identification of the doubly transitive groups G0 which

arise in this theorem (although sketched vaguely in some of the above

examples) is a fairly tedious process. The unpleasant details of these

identifications have been deferred to a mimeographed supplement avail-

able to the reader upon request [6].

What doubly transitive groups may arise by virtue of the graph-

extension theorem? As a contribution to this question we announce the

following

Theorem. In the graph-extension theorem, if either of the mappings

hx or lu can be taken to be the identity mapping on T or S respectively (for

example by composing it with a suitable mapping induced from an auto-

morphism of il fixing x) then the doubly transitive groups G0 which appear

are the groups Sp(2«, 2) in either of its two doubly transitive representations,

the semidirect product o/Sp(2n. 2) and the additive group of its vector space

V+, or PSL(2, 5) acting on six letters.

This theorem follows from a number of characterization theorems on

graphs which will be published elsewhere [5].

The author is grateful to Professor K. Rudvalis who pointed out to the

author the possibility that the Higman-Sims group might be an example

of this theorem. The author expresses his deep gratitude to Professor

W. Kantor for many valuable discussions (including the entire second

example!) and for urging the publication of this note.
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