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ON THE RADICAL OF THE GROUP
ALGEBRA OF A p-GROUP OVER
A MODULAR FIELD

GAIL L. CARNS AND CHONG-YUN CHAO!

ABSTRACT. Let G be a finite p-group, K be ihe field of integers
modulo p, KG be the group algebra of G over K and N be the radical
of KG. By using the fact that the annihilator, A(N), of N is one
dimensional, we characterize the elements of 4(N?). We also present
relationships among the cardinzlity of 4(N?), the number of maxi-
mal subgroups in G and the number of conjugate classes in G.
Theorems concerning the Frattini subalgebra of N and the existence
of an outer automorphism of N are also proved.

1. Introduction. Throughout this note, we let p be a prime, G be a
finite p-group, K be the field of integers modulo p and KG be the group
algebra of G over K. It is well known that KG is not semisimple; the
fundamental ideal N={3,.; «,g € KG; 3 .o ®,=0} of KG is its radical
([3], [6]). Let e be the identity of G, then the elements g—e for all gxe
in G constitute a basis for N. Hence, the dimension, dim N, of N is equal
to |G]|—1 where |G| is the order of G. Also, KG is the semidirect sum of
the ideal N and the subalgebra (e). The nilpotent associative algebra N is
said to be of exponent ¢ if N'#0 and N*'=0, i.c.,

N=N!'D>DN2>.--> Nto> Nt =(.

Recently, Hill in [2] showed that the annihilator (two sided) of N¢, A(N?),
is N**1-% 1<i=<t. In this note we shall present some properties of N by
centering around the fact that 4(N) is isomorphic to X, i.e., the dimension
of A(N) is one. In §2, we present a characterization of elements in A(N?)
and relationships among the cardinality, |4(N?)|, of A(N?), the number
of maximatl subgroups of G and the number of conjugate classes in G. In
particular, dim A(N?) is equal to the least number of generators of G plus
one. In §3, we show that the Frattini subalgebra of any associative nil-
potent algebra U over a field is U2 We also use Stitzinger’s results in [7]
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to state the nonimbedding properties of N. In §4, analogous to Gaschiitz’
result in [1] on the existence of an outer p-automorphism of a finite
nonabelian p-group, we show that N has an automorphism of order p
which is not inner if |G| >2.

2. A characterization of elements in A(N2). For each element
=3, %8 € KG, we may associate a map a from G to K defined by
a(g)=2,. Clearly, this correspondence between « and & is one-to-one.
Also, the addition of two such maps is defined as pointwise, i.e.,
(x+P)(g)=a(g)+PB(g). Let N be the fundamental ideal of exponent 7 in
KG. Then, by Hill’s result in [2], we know A(N)=N". Also, one can easily
verify that k € A(N)=N"if and only if k is a constant map, i.e., k(g)=k
for every g € G and N'={(Z,.; 8)}-

THEOREM 1. Let N be the fundamental ideal of exponent t>1 in KG
and Hom(G, K*) be the set of group homomorphisms of G into the additive
group K+ of the integers modulo p. Then o € A(N?) if and only if a=a*+k
for some a* € Hom(G, K*) and some constant map k. Further, a* and k
are unique for o.

Proor. If a=a*+k for some a* € Hom(G, K*) and some constant
map k, then for every g € G, we have

o) a*(g) = a(g) — k(g) = =, — k.
Also, by using (1) and a*(gh)=a*(g)+a*(1), we have
2) Ay =, + &, — K

for all g, 1 € G. Now by using (2), for all /i, u € G, we have

(h—e)u —eo=(hu—h—u+ e)(Za,g)

g€}

= Z(lﬂhl‘g - aghg - %uUg + c<yg)
g€

= z(xu'lh‘lg = Xpm1g T Xymag + a!l)g
g7

= Z [(“u‘l + Kp-1y — k) - Xp-1 (0(,‘—1 + Xy — ") + 1g]g
geld

=0

Similarly, a(fi—e)(u—e)=0. It follows that « € A(N?).
Conversely, if x € A(N?), then for all 1, u € G,

O0=(ht—e)u!' — e)(z%g) = Z(au,,g — %y, — %, + 2,)g.

g 9@
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In particular, the coefficient of e is zero, i.e.,

Xy = Oy + & — *es
or
3) a(uh) = a(u) + a(h) — o,.
Let k=0, and a*=a—k, then (3) can be written as
a*(uh) = a*(u) + a*(h),
i.e., a* e Hom(G, K*).

The uniqueness follows from the fact that a*(e)=0 yields a(e)=k(e).

REMARK. By Hill’s result in [2], in Theorem 2, A(N?) can be replaced
by Nt1,

CoRrOLLARY 1.1. Let r=dim A(N¥)=dim N, m=the number of
maximal subgroups of G, d=the least number of elements which generate G,
c=the number of conjugate classes in G and $(G)=the Frattini subgroup
of G. Then,

@) [AN)I=p-|(G/$(O)),
(“) m= zzuoP ’
(iii) r=d+1,
(iv) G is cyclic if and only if r=2,
(V) G is elementary abelian if and only if r=n+1 where |G|=p",
(Vi) m=3i2 p',
(vi)) A(N®)=N'"1SZ(N) where Z(N) is the center of N,

(viii) m= 364 p* if 1G1>4,

Proof. (i) By Theorem 1, |A(N?)|=p-|Hom(G, K*)|. Since K+ is a
simple group, the kernel of any nonzero map % in Hom(G, K+) is a
maximal subgroup in G. Since the kernel of % contains the kernel of the
natural map from G onto G/¢(G), any homomorphism of G into K+ can
be factored through G/¢(G). Thus, |Hom(G, K+)|=|Hom(G/$(G), K¥)|.
Also, G/#(G) is elementary abelian and every finite abelian group is iso-
morphic to its dual group [5, p. 50], therefore we have

[Hom(G/$(G), K)| = |G/$(G)|.
Consequently,
[A(N?)] = p-[Hom(G, K*)| = p-|G/¢(G)|.

(ii) Let o be a nonzero homomorphism of G onto K+. Then the kernel
of ¢ is a maximal subgroup of G. Two nonzero homomorphisms in
Hom(G, K*) have the same kernel if and only if they differ by an auto-
morphism of K*. Thus, |[Hom(G, K*)|=14(p—1)m and p'=|A(N?)|=
p Hom |(G, K*)|=p(14+(p—1)m), i.e., m=2ip".



326 G. L. CARNS AND C.-Y. CHAO [June

(iii) By (i), r=dim(4(N?)=dimg(G/$(G))+1 and, by the Burnside
basis theorem, dim(G/$(G))=d.

(iv), (v) and (vi) follow from (i), (ii) and (iii).

REMARK. By using Corollary 14 in [2] we can state: If r=2, KG
has exactly one ideal of each dimension.

(vii) It is well known that the conjugate sums C'=e, C?,- -+, C¢ con-
stitute a basis for the center, Z(XG), of KG where each C® is the sum of
elements in a conjugate class in G. Let a= 3 ;. «,g be an arbitrary element
in A(N?). If u and 4 are conjugates in G, i.e., h=ruv~! for some veG, then,
by using Theorem 1, we have

o, = a¥(h) + k = a*(euw™) + k = a*(u) + k = «,.

Hence, « is a linear combination of conjugate sums, i.e., « € Z(KG).
Since Z(N)=Z(KG)NN, A(N))=Z(N).

(viii) Since Z(N)=Z{KG)NN and e € Z(KG) and e ¢ N, dim Z(N)<
dim Z(KG)=c. Let a,, 2<i=c, be the cardinality of the conjugate class
from which the sum c? is taken. We note that since G is a p-group, a; is
equal to a power of p greater than one if the conjugate class consists of
more than one element. Since C1, C2, - - -, C¢ constitute a basis for KG,
C%—ase, C3—a4e, - -+, C°—a,e are in Z(N) and are linearly independent.
Hence, dim Z(N)=c—1.

Since G is a p-group, there is a nonidentity /# in Z(G) such that
h—e ¢ N1, The reason is that if ~—ebelonged to N*~1, then (u—e)(h—e)=
2sec & for some u e G. This is impossible since |G|>4. Consequently,
A(N®)#Z(N) and p(1+(p—1)m)=[A(N?)|<pc?, ie., p(l4+m(p—1)=
P and m= (p=*—1)/(p—1)= 323 p'.

REMARK. If G is the dihedral group of order 8 and if K is the field of
integers modulo 2, then m=3, ¢=35 and the equality in (viii) holds.

3. Nonimbedding. Let S be an associative algebra (not necessarily
finite dimensional) over a field. The Frattini subalgebra, ¢(S), of S is
defined as the intersection of all maximal subalgebras of S’ if maximal sub-
algebras of S’ exist and as S otherwise. Stitzinger showed in {7, p. 531] that
if B is a nontrivial finite dimensional nilpotent associative algebra over a
field such that the right annihilator of B is one dimensional, then B cannot
be imbedded as an ideal in any associative algebra S contained in ¢(S).

THEOREM 2. Let U be a nilpotent associative algebra over a field F.
Then $(U)=U>

In order to prove Theorem 2, we need the following: We define the
normalizer, n, (W), of a subalgebra W in an associative algebra V" over a
field F to be {v € V:vW< Wand Wv< W}. We say that a subalgebra W is
self-normalizing if n,(W)=W.
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LEMMA 1. Let V be a nilpotent associative algebra of exponent t>1
over afield F. If W is a proper subalgebra of V then W is not self-normalizing.

PROOF. W contains V'#1=(0. Assume that W contains ¥’ and does
not contain V-1, Then W+ V< Wand W+ Vi-'¢ W. Also,

W+ VYW W+ VIiecW and WWH+ V) W+ VicW

Hence, ny(W)£ W.

The proof of Theorem 2 goes as follows: We claim that U?2¢(U).
Since U/U? has zero multiplication, every maximal subspace M, of the
vector space U/U? is a maximal subalgebra. Hence M,+ U? is a maximal
subalgebra in U and U%2¢(V).

Now we show that $(U)2 U2 Let M be any maximal subalgebra of U.
By Lemma 1, M is an ideal in U. Hence, U= U/M#0. Since M is maximal
and U is nilpotent, U is a nilpoteni algebra with no proper subalgebras.
Since U2 is a subalgebra of U and U is nilpotent, U2=D, i.e., U< M for
any arbitrary maximal subalgebra M of U. It follows that U2c ¢(U).

COROLLARY 2.1. Let N be the fundamental ideal of KG where |G|>2.
Then N cannot be imbedded as an ideal in any finite nilpotent associative
algebra B over K such that B*2> N.

Proor. It follows from dim A(N)=1, Stitzinger’s result in [7] and
our Theorem 2.

4. Outer automorphisms. Let R be a ring with an identity e, then, for
a right quasi-regular element a in R, w,(x)=x+a'x+xa+a'xa=
(e+a')x(e+a), where @’ is a right quasi-inverse of a, is an automorphism
of R called an inner automorphisin of R. As indicated on p. 55 in [4], the
algebra which has a basis {x, y, z} over the field of integers modulo 2 with
the multiplication defined by xy=z and all other products being zero has
no outer (noninner) automorphism. Since every nilpotent ¢lement is right
quasi-regular and since N is a nilpotent ideal in KG, for each g€ N,
w,(x)=(e+4')x(e+q) is an inner automorphism of N. In fact, each auto-
morphism @ of G induces an automorphism w on N defined linearly by
(S pec %,8)= D geq %,(@g). If &,(h)=g*hg is an inner automorphism of
G, then one can easily verify that it induces an automorphism on N which
is equal to the inner automorphism w,_, on N. Although Gaschiitz
showed in [1] that every nonabelian p-group G possesses a noninner
automorphism whose order is a power of p, it is not known whether this
outer automorphism of G induces an outer automorphism on N. However,
by using A(N)={((Z,cc 8)) We can prove the following

THEOREM 3. Let N be the fundamental ideal of KG where |G|>2. Then
N has an automorphism of order p which is not inner.
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PrOOF. LetheG,(h—e)€ Nand(h—e)¢ N2 Since (h—e) ¢ N2, we may
choose a complementary subspace M of ((i—e))in Nsuchthat M2 N2 Then
N=M+{(h—e)) where the sum is the direct sum of vector spaces. Since
IG1>2, z=73,.c 8 € N°c M and M 0. Since every element x € N can be
uniquely written as x=y+k(h—e) where y € M and k € K, we can define
a linear transformation T on N such that Ty=yand T(k(h—e))=k(h—e)+
kz. We claim that T is an automorphism. By using z € A(N) and M being
an ideal in N (since M2 N?), it follows that T is an endomorphism. Also,
T(y+k(h-—e) kz)=y+k(h—e) indicates that T is surjective. Hence, T
is an automorphism.

We claim that T is not inner. Suppose the contrary, i.e., there existed
a g € N such that T=aw,, then, we would, in particular, have

@4 (h—e)+z=Th—e)=w,h—e)=(e+q)h— e)e+q).
Multiplying both sides of (4) by (e+¢), we obtain
h—e+z+qh—e)=(h—e + (h— ey,

., z=hq—gqh. Say q=:- 4,14 -, then z=(tp-1—2,-1)e+- -
But z2=3 .08 Hence it is a contradiction, and T is not inner.
Since T?(x)=T?(y+k(h—e))=y+k(h—e)+pkz=x for every xe N, T
is of order p.
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