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ON THE RADICAL OF THE GROUP

ALGEBRA  OF A  />GROUP  OVER
A  MODULAR FIELD

GAIL L.  CARNS AND  CHONG-YUN  CHAO1

Abstract. Let G be a finite />-group, K be ihe field of integers

modulo/), KG be the group algebra of G over K and N be the radical

of KG. By using the fact that the annihilator, /4(A), of N is one

dimensional, we characterize the elements of AiN1). We also present

relationships among the cardinality of A(N2), the number of maxi-

mal subgroups in G and the number of conjugate classes in G.

Theorems concerning the Frattini subalgebra of A' and the existence

of an outer automorphism of N are also proved.

1. Introduction. Throughout this note, we let p be a prime, G be a

finite />group, K be the field of integers modulo p and KG be the group

algebra of G over K. It is well known that KG is not semisimple; the

fundamental ideal /V={2,eC <x,g eKG; 20eO as=0) °f KG ¡s >ts radical

([3], [6]). Let e be the identity of G, then the elements g—e for all g?*e

in G constitute a basis for N. Hence, the dimension, dim N, of N is equal

to |G| —1 where \G\ is the order of G. Also, KG is the semidirect sum of

the ideal N and the subalgebra (e). The nilpotent associative algebra N is

said to be of exponent t if/WO and Ari+1=0, i.e.,

N = N1 => N2 => • • • => N' => Nt+1 = 0.

Recently, Hill in [2] showed that the annihilator (two sided) of N\ A(N'),

is Nt+1~\ l2í/'_^. In this note we shall present some properties of N by

centering around the fact that A(N) is isomorphic to K, i.e., the dimension

of A(N) is one. In §2, we present a characterization of elements in A(N2)

and relationships among the cardinality, \A(N2)\, of A(N2), the number

of maximal subgroups of G and the number of conjugate classes in G. In

particular, dim A(N2) is equal to the least number of generators of G plus

one. In §3, we show that the Frattini subalgebra of any associative nil-

potent algebra U over a field is U2. We also use Stitzinger's results in [7]
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to state the nonimbedding properties of TV. In §4, analogous to Gaschütz'

result in [1] on the existence of an outer /^-automorphism of a finite

nonabelian /j-group, we show that TV has an automorphism of order p

which is not inner if [G|>2.

2. A characterization of elements in A(N2). For each element

a=^gs(V y.,jgeKG, we may associate a map a from G to K defined by

a(g) = ag. Clearly, this correspondence between a and a is one-to-one.

Also, the addition of two such maps is defined as pointwise, i.e.,

(a.+ß)(g)=a.(g) + ß(g). Let TV be the fundamental ideal of exponent t in

TvG. Then, by Hill's result in [2], we know A(N)=N'. Also, one can easily

verify that k e A(N)=N' if and only if A is a constant map, i.e., k(g)=k

for every g e G and #'=((2^,; g)).

Theorem 1. Let TV be the fundamental ideal of exponent r>l in KG

and Hom(G, K+) be the set of group homomorphisms of G into the additive

group Tí-1" of the integers modulo p. Then a e A(N2) if and only ifa = a*+k

for some a* e Hom(G, K+) and some constant map k. Further, a* and k

are unique for a.

Proof. If a=a*+¿ for some a* e Hom(G, K+) and some constant

map k, then for every g e G, we have

(1) **(g) - «(g) - k(g) - a, - *.

Also, by using (1) and a.*(gh) = a.*(g) + a*(h), we have

(2) a,» = a, + aA - k

for all g, h e G. Now by using (2), for all /;, u e G, we have

(h — e)(u — eyx = (hu — h — u + e)l 2a5?)
Vo     /

= 2<»<g - a„ng - a»«g + a,g)
geG

= 2 [(a><-1 + «IT1» _ k) - *h-i<, - (a«-i + % - fe) + aJg

= 0

Similarly, a(/¡—e)(u—e)=0. It follows that a e ^(TV2).

Conversely, if a e A(N2), then for all A, i/ e G,

0 = (A-1 - e)(u~l - e)i 2*,g) = 2(*»a. - a*. - ««„ + *«)g-
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In particular, the coefficient of e is zero, i.e.,

««» =   «u  +  «/.-««,

or

(3) a(uh) = b(k) + a(h) - a,.

Let k=cr.e and a*=a—k, then (3) can be written as

«*(«/;) = a*(u) + a*(h),

i.e., a* 6 Hom(G, K+).

The uniqueness follows from the fact that ot*(e)=0 yields a(e)=k(e).

Remark. By Hill's result in [2], in Theorem 2, A(N2) can be replaced

by A"-1.

Corollary 1.1. Let r=dimA(N2)=dimNt~1, m=the number of

maximal subgroups ofG, d=the least number of elements which generate G,

c=the number of conjugate classes in G and <f>(G) — the Frattini subgroup

ofG. Then,

(i) \A(N2)\=p-\(Gj<f>(G))\,
(ii) m=YiJpi,

(iii) r=d+l,

(iv) G ii cyclic if and only ifr=2,
(v) G is elementary abelian if and only ifr=n+l where \G\=p",

(vi) «-2&V.
(vii) A(N2)=N'~1ÇZ(N) where Z(N) is the center ofN,

(viii) m<2t0/'i'/!G!>4.

Proof, (i) By Theorem 1, \A(N2)\=p-\Hom(G, K+)\. Since K+ is a
simple group, the kernel of any nonzero map r¡ in Hom(G, K+) is a

maximal subgroup in G. Since the kernel of r¡ contains the kernel of the

natural map from G onto Gj<f>(G), any homomorphism of G into K+ can

be factored through Gj<p(G). Thus, \Hom(G, K+)\ = \Hom(Glcp(G), K+)\.

Also, Gj<p(G) is elementary abelian and every finite abelian group is iso-

morphic to its dual group [5, p. 50], therefore we have

|Hom(G/«¿(G), K+)\ = |G/<¿(G)|.

Consequently,

\A(N2)\ =p-\Hom(G,K+)\ = p-\Gj<f>(G)\.

(ii) Let a be a nonzero homomorphism of G onto K+. Then the kernel

of a is a maximal subgroup of G. Two nonzero homomorphisms in

Hom(G, K+) have the same kernel if and only if they differ by an auto-

morphism of A'+. Thus, |Hom(G, K+)\ = l + (p-l)m and pr=\A(N2)\ =

p Horn \(G, K+)\=p(l+(p-l)m), i.e., m^YiZlp'.
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(iii) By (i), r=dim(A(N2))=d\mK(GI<f>(G))+\ and, by the Burnside

basis theorem, dimA-(G/<p(G))=-/.

(iv), (v) and (vi) follow from (i), (ii) and (iii).

Remark. By using Corollary 14 in [2] we can state: If r=2, KG

has exactly one ideal of each dimension.

(vii) It is well known that the conjugate sums Cl=e, C2, ■ • • , Cc con-

stitute a basis for the center, Z(7vG), of KG where each C' is the sum of

elements in a conjugate class in G. Let a= 2„6G a?g De an arbitrary element

in A(N2). If u and A are conjugates in G, i.e., h=-vuv~x for some t>eG, then,

by using Theorem 1, we have

acA = a*(A) + k = a*(n«;-1) + k = a*(u) + k = a„.

Hence, a is a linear combination of conjugate sums, i.e., aeZ(KG).

Since Z(N)=Z(KG)C\N, A(N2)çZ(N).

(viii) Since Z(N)=Z(KG)nN and eeZ(KG) and e $ TV, dim Z(TV)<

dimZ(7(TG) = c. Let c(, 2_f'_c, be the cardinality of the conjugate class

from which the sum c* is taken. We note that since G is a />group, a, is

equal to a power of p greater than one if the conjugate class consists of

more than one element. Since C1, C2, ■ ■ ■ , Cc constitute a basis for KG,

C2—a2e, C3—a3e, • • • , Cc—ace are in Z(N) and are linearly independent.

Hence, dim Z(TV)=c— 1.

Since G is a /7-group, there is a nonidentity A in Z(G) such that

h—e$ TV'-1. The reason is that if A — e belonged to TV'-1, then (u—e)(h — e) =

2ssGg f°r some ueG. This is impossible since |G[>4. Consequently,

A(N2)^Z(N) and p(l + (p-l)m) = \A(N2)\<pc~\ i.e., p(\+m(p-\))<

p*-\ and m<(p'-3-\)l(p-l)=2¡^pi.
Remark. If G is the dihedral group of order 8 and if K is the field of

integers modulo 2, then m = 3, c=5 and the equality in (viii) holds.

3. Nonimbedding. Let S be an associative algebra (not necessarily

finite dimensional) over a field. The Frattini subalgebra, fb(S), of 5 is

defined as the intersection of all maximal subalgebras of S' if maximal sub-

algebras of S' exist and as S otherwise. Stitzinger showed in [7, p. 531] that

if B is a nontrivial finite dimensional nilpotent associative algebra over a

field such that the right annihilator of B is one dimensional, then B cannot

be imbedded as an ideal in any associative algebra S contained in <b(S).

Theorem 2. Let U be a nilpotent associative algebra over a field F.

Then <p(U)=U2.

In order to prove Theorem 2, we need the following: We define the

normalizer, nv(W), of a subalgebra W in an associative algebra V over a

field F to be [v e V:vvVç Wand Wv=, W). We say that a subalgebra I^is

self-normalizing if nv(W)= W.
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Lemma 1. Let V be a nilpotent associative algebra of exponent r>l

over afield F. If Wis a proper subalgebra of V then W is not self-normalizing.

Proof. W contains Vt+1=0. Assume that W contains Vs and does

not contain V*-1. Then W+V^W and W+V'-1^ W. Also,

(W+ V*-*)W£ W+ V' Q W   and    W(W + F*-*) S W+ V £ W.

Hence, nv(W)^W.
The proof of Theorem 2 goes as follows: We claim that t/22¿>(í/).

Since UjU2 has zero multiplication, every maximal subspace A/a of the

vector space UjU2 is a maximal subalgebra. Hence M„+U2 is a maximal

subalgebra in í/and £/22¿>(í/).

Now we show that (p(U)'S U2. Let M be any maximal subalgebra of V.

By Lemma 1, M is an ideal in U. Hence, Ü= U/M^Ö. Since M is maximal

and U is nilpotent, 0 is a nilpotent algebra with no proper subalgebras.

Since D2 is a subalgebra of 0 and D is nilpotent, f72=ö, i.e., U2ç=M for

any arbitrary maximal subalgebra M of U. It follows that U2s<f>(U).

Corollary 2.1. Let N be the fundamental ideal of KG where |G|>2.

Then N cannot be imbedded as an ideal in any finite nilpotent associative

algebra B over K such that B2^ N.

Proof. It follows from dimA(N)=l, Stitzinger's result in [7] and

our Theorem 2.

4. Outer automorphisms. Let R be a ring with an identity e, then, for

a right quasi-regular element a in R, wa(x)=x+a'x+xa+a'xa=

(e+a')x(e+a), where a' is a right quasi-inverse of a, is an automorphism

of R called an inner automorphism of R. As indicated on p. 55 in [4], the

algebra which has a basis {x, y, z} over the field of integers modulo 2 with

the multiplication defined by xy=z and all other products being zero has

no outer (noninner) automorphism. Since every nilpotent element is right

quasi-regular and since AT is a nilpotent ideal in KG, for each qe N,

toe(x)=(e+q')x(e+q) is an inner automorphism of A. In fact, each auto-

morphism w of G induces an automorphism w on Ar defined linearly by

w(I»eG <*»£)=20eG «»(¿i?). If 5B(h)=g~1hg is an inner automorphism of

G, then one can easily verify that it induces an automorphism on N which

is equal to the inner automorphism oj„_e on N. Although Gaschiitz

showed in [1] that every nonabelian regroup G possesses a noninner

automorphism whose order is a power ofp, it is not known whether this

outer automorphism of G induces an outer automorphism on N. However,

by using A(N)= {(ygeG g)} we can prove the following

Theorem 3. Let N be the fundamental ideal of KG where |G|>2. Then

N has an automorphism of order p which is not inner.
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Proof. Let A e G, (A—e) e TVand (A—e) £ TV2. Since (A—<?) <£ TV2, we may

choose a complementary subspace Moï((h—e))ïnNsuch that M2 TV2. Then

N=M+((h — e)) where the sum is the direct sum of vector spaces. Since

|G| >2, z= 2;,eG g e TV's M and A/^O. Since every element x e TV can be

uniquely written as x=y+k(h—e) where 7 e M and k e K, we can define

a linear transformation Fon TV such that Fy = v and T(k(h — e))=k(h — e)+

kz. We claim that Fis an automorphism. By using z e A(N) and M being

an ideal in TV (since A/2 TV2), it follows that Fis an endomorphism. Also,

T(y+k(h—e)—kz)—yA-k(h — e) indicates that F is surjective. Hence, T

is an automorphism.

We claim that Fis not inner. Suppose the contrary, i.e., there existed

a q e TV such that T=coq, then, we would, in particular, have

(4)    (A - e) + Z - T(h -e) = coQ(h - e) = (e + q')(h - e)(e + q).

Multiplying both sides of (4) by (e+q), we obtain

(A - e) + z + q(h - e) = (A - e) + (h - e)q,

i.e., z=-hq—qh. Say q=- • - + aA-iA-1-|-, then z = (y.h-i — 0Lh-i)e+- ■ ■ .

But z=ygeGg. Hence, it is a contradiction, and Fis not inner.

Since Tp(x)=Tp(y+k(h-e))=y+k(h-e)+pkz=x for every x e N, T

is of order/».
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