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ON THE SATURATION CLASS FOR SPLINE FUNCTIONS

FRANKLIN RICHARDS

Abstract. Let yk(An) be the space of piecewise polynomials of

degree at most k on [0,1] possessing jumps at 1/n, 2/«, • • •, n—\\n.

Recently Gaier has shown that under the supremum norm

||/- ^(AJü + IIZ-^A^II >«-*-» unless /is a polynomial of
degree at most k. Here we show if 0<a5jl, then ||/— ¿^k(âi„)\\ =

0{n-k~") if and oniy if/eC*[0, 1 ] and /'*> satisfies a Lipschitz con-

dition of order a. In addition, a result similar to Gaier's is given.

1. Let A:0=xo<Xx<- • -<xn=l be some subdivision of [0, 1]. We

then define the class of spline functions of degree k with knots A, Sr°k(A),

to be those functions f(x) which reduce to an element of Trk (the set of

polynomials of degree at most k) on each subinterval [x{_x, xA. In the

usual definition, we also require/eC*-1, but that will not be assumed here.

If/is a bounded real valued function on [0, 1], define

ll/li = sup |/(x)|   and    ||/-^(A)|j =   inf  ||/-j||.
reto.13 seyklA)

By a saturation theorem for spline functions, we mean a solution to the

following problem: Let A„ be a given sequence of subdivisions of [0, 1].

Can we then find a sequence of positive reals (oc„) and a set £CÎ so that

(1) ||/-^fc(An)|| = 0(an)   ifandonlyif/eifî

and

(2) ||/ - ^(An)|| = o(an)   if and only if fe nk.

Gaier [1] has established (2) under the condition of uniform subdivisions,

where he shows a.n=n~k~1. We shall solve the corresponding problem for

(1) and a result of the form (2) for more general type subdivisions.

2. In this section, we assume An—{i¡n; i=0, 1, • ■ • , n}.

Theorem 1. Let k be a given nonnegative integer, 0<a_l, and define

jSf*={/;/e*C*[0, !],/**' satisfies a Lipschitz condition of order a}. Then

(3) \\ f - ykiAn)\\ = Oin-k-°)   if and only if fe^k,.
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The sufficiency of (3) is known (see e.g. [3]). Now suppose

(4) ||/-^(An)|| = 0(n-*-*).

To show/e=S?* requires a series of lemmas.

Lemma 1.    Let Sne^'i(An) be a best approximation tof. Then there exist

functions fv,/„, v=0,l, ■ • • , k, such that
00

(5) S^x) -*/v(x)    uniformly for x $ U A2n
7, = 1

00

(6) S$\x) -*/v(x)   uniformly for x $ {J A3».
n-l

Proof. Observe that S2n—52n+i65'fc(A2n+i). Hence by using Markoff's

inequality on each subinterval of A2n+i, it follows that

IS?' - s?,+1l ̂  ^i(2"+1)v l|S2- - Sa«+i = iV*-**'.

Therefore, if m>n,

and so there exist functions/v satisfying (5), in particular

(7) \\S^-fv\\<K32-nlk-v+x).

Note that/v(;c) is defined only for *^U "_i A2„. The proof of (6) is nearly

identical.

Lemma 2.   fi is a continuous function on its domain, i.e. if x0$[J A2», then

lim   sup   |/v(x)-/v(xo)l = 0,       x£UA2".
£-»0 \x—Xo\ <£

A similar statement holds for /„.

Proof.    Suppose not. Then for some x0,

lim   sup   |/v(x)-/v(x0)| = <5>0.
£-*0 \z—Xo| <£

But since S'*' is continuous on each subinterval of A™, we must have

|5¡?-/«l£¿/2 for all n, contradicting (5).

Lemma 3.   /eC*[0, 1].

Proof. We shall show fM exists, is continuous, and fM=fi=fv

(where this equality makes sense), v=0, 1, • • • , k. The proof will be by

induction on v.
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By (4)-(6), f(x)=f0(x) for x$l) A2„, and f(x)=f0(x) for x$[J A3„.
Continuity off follows from Lemma 2.

Now suppose/(v_1) is continuous. For f, x$\J A2<., we write

(8) j /,(/) dt = j"{fXt) - S2V(t)} dt +j'sP(t) dt.

The first term on the right will -+0 as n-*oo. Letting hv:=h](n) denote

the jump of S¡? at xi=i2-\ i.e. h¡=Si2:>(xi+)-S{2l\x,—), it follows that

(9) JV»(o dt = s«^»(x) - s2n>(D _ 2' «r1

where T' means we sum over those i such that í2-n lies between | and jc.

By (7) and since/'*_1>=/v_1 is continuous, one has

\hvrx\ = 2K32-n(k-"+x+I\       i = 1, 2, • • • , 2" - 1.

Hence

(10) 2' I**"1! = 2K32-"(,:-v+,,) = 2K32~na.

Letting w-*-co in (8), we have from (5), (9), and (10),

jXfv(t)dt=fv_1(x)-fY_1(ï).

Lemma  2  and  the  induction  hypothesis   now   imply f{v)(x)—fv(x).

Similarly fM(x) =/v(.x) for x${J A3„, and so/(v) is continuous.

Lemma 4.   /(A) satisfies a Lipschitz condition of order a..

Proof. Suppose x, y$\J A2„, x<y. Then there exists N=N(x, y) such

that at least one and at most two subintervals of A2a- lie strictly between

x and y. Let us choose points Z0, Z,, • • • , Z2r+1, r=2 or 3, satisfying the

following conditions :

r = i: 2n < x < Cx ^    2'v 2*

g + 3
< Z4 < y <

iJV

(11)

r = 3-   ^<*<Zi<_pr <Z2<Z3<-]¿r

a + 3 ö + 4
< Z4 < Z5 < ~T < Z6 < y < ^5- ,
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(12) Zti-Zu.x<mn[^,t±l-x,y-l±^,       i = l,-,r,

(13) Zii(UA2")u(UA3»),

(14) Z0 = x,      Z2r+1 = y.

Now

\fM(y) -fik)(x)\ ^ 2 |/(fc,(z2i+1) -/(i)(z2i)| + 2 \flk)iz2t) -f{k)(z2i_x)\.
¡=o ¿=i

Since Z2¿ and Z2Í+1 lie on the same subinterval of A2.v, and S{2kJ is a step

function, we have, by (7),

\f{k)(Z2i+x) -fM(Z2¡)\ = \fk(Z2i+1) - SikJ(Z2i+1)\ + |S$(Z2i+1) - S$(Z2<)|

+ \S2kj(Z2i)-fk(Z2i)\i2K32-Nx.

By (12), Z2i and Z2i_x he on the same subinterval of A3.v. Hence

\fM(Z2i) - fM(Z2i_x)\ ^2K¿-N*
and so

\f{k)(y) -f{k,(x)\ = 8K32~X* + 6K43-^.

But 2~A <y—x. Therefore

\fik\y) -fm(x)\ = (8X3 + 6KA \y - x\'.

This completes the proof of the lemma and the theorem.

Remark.    The assumption that our splines be elements of C*_1 con-

siderably simplifies the proof.

3. It is not too difficult to see that the preceding proof may be altered

slightly to establish (2). However the following result of Gaier is con-

siderably stronger.

Theorem 2 (Gaier). Suppose ffTrk. Then there exists a constant

c=c(f)>0 such, that

(15) ||/ - ¿VAJI + ||/ - ^(AB+1)|| = c/nk+x.

Before considering a version of Theorem 2 for more arbitrary sub-

divisions, an example seems in order. Let

F(x) = (x - it = (x - if,

X= 0, x < i

Since FeSr°k(A2r), we see that (15) cannot be improved to ||/-^fc(An)|| =-

cjnk+x. This is due to the fact that F is not sufficiently smooth, as will be

demonstrated in Theorem 3.
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We now introduce some notation. The subdivisions A„ will be of the

form A.n:0**xl<xl<- • -<aî-l. Let ||A„||-max,- («?-*?_!) and
(A„)—miiL; (x"—x"_x)- Then we may state

Theorem 3.    Let An be a sequence of subdivisions satisfying

(16) l|An||/(A„) = ß < co,       n-1,2,---.

JAe/? z//eCi+1[0, 1] andf$-nk, there exists a constant c—c(f)>0 such that

(17) ||/-yfc(A„)|! ^c¡nk+\

Proof. Suppose (17) does not hold. Then there exist a sequence of

subdivisions A,., and a function 6(n) satisfying

(18) \\f - ^k(An)\\ ^ 6(n¡)n¡k-x

and 6(n)-^>-0 as n->oo.

On each subinterval [x"/-, x*^] of A„., choose k+2 equally spaced points

Jo» >"ij ' ' " ,>'i-+i such that /t+i—>'o=(A„.). Then using the Steffenson

notation for divided differences, one finds

s,.Áyo,'•-,y*+i) -f(y0,• • • »jw)

(19) 1      (fc + tvw-iftfci

n,/ v=0 \      V       /(k + 1)!   (A

where Snieár°k(Ani) is a best approximation to /. But since SKi&rk on

[x", x^ifeC^lO, 1], and using (16) and (18) we obtain

|/(i+1,(í7)| = [2(fc + i)f+1-r^i #«,)
(20) <a»<>

= {2/?(fc + l)}**1^)

where tf'Kfi'Kx^. Since ||AB(||-*0, every point of [0, 1] is a limit

point of some infinite subset of {!"*, j=0, 1, • • • , w,—1; /'=1, 2, • • ■}.

Hence if/eC*+1[0, 1], by (18) and (20) we have/'^'^sO, xe[0, 1], i.e.

Acknowledgement.   I am indebted to Professor Z. Ditzian for several

valuable suggestions.
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