PURE STATES WITH THE RESTRICTION PROPERTY

BRUCE A. BARNES1

ABSTRACT. Conditions are given which imply that a pure state of a B^* -algebra A restricts to a pure state of some maximal commutative *-subalgebra of A.

1. Introduction. A pure state ρ of a B^* -algebra A has the restriction property if there exists a maximal commutative *-subalgebra C of A such that the restriction of ρ to C is a pure state of C (i.e. ρ is a nonzero multiplicative linear functional on C). The work of R. Kadison and R. Singer in [4] raises the question of whether or not each pure state of a R^* -algebra has the restriction property. This question was answered by R. Aarnes and R. Kadison for a special class of R^* -algebras R. They prove that when R is separable and has an identity, then each pure state of R has the restriction property [1, Theorem 2]. Again in the case when R is separable, R0. Akemann in [2] removed the requirement that R1 have an identity and made other improvements in the result of Aarnes and Kadison (including a proof that in this case a pure state R2 of R3 is the unique extension of a pure state of some maximal commutative *-subalgebra of R3. However, the general question remains open.

In this note we give several new conditions on a pure state ρ of a B^* -algebra which imply that ρ has the restriction property. A is a B^* -algebra throughout. Let $a \rightarrow \pi(a)$ be a *-representation of A on a Hilbert space \mathscr{H} . A positive functional ρ is represented by π if there is $\xi \in \mathscr{H}$, $\|\xi\| = 1$, such that $\rho(a) = (\pi(a)\xi, \xi)$ for all $a \in A$. A pure state of A is always represented by some irreducible *-representation of A; see [3, pp. 32, 33, 37] for details. Now let ρ be a pure state of A which is represented by an irreducible *-representation π of A on a Hilbert space \mathscr{H} . We prove that if either \mathscr{H} is separable or $\pi(A)$ contains $\mathscr{F}(\mathscr{H})$, the algebra of bounded operators on \mathscr{H} with finite dimensional range, then ρ has the restriction property. The proofs of these results are indebted to the ideas of Aarnes and Kadison in [1].

2. The results. Let be \mathcal{H} a Hilbert space. $\mathcal{B}(\mathcal{H})$ is the algebra of bounded operators on \mathcal{H} . When \mathcal{K} is a subspace of \mathcal{H} and B is a

Received by the editors September 15, 1971.

AMS 1970 subject classifications. Primary 46L05.

Key words and phrases. B*-algebra, pure state, maximal commutative *-subalgebra.

¹ This research was supported by National Science Foundation Grant GP-28250.

nonempty subset of $\mathscr{B}(\mathscr{H})$, then $\mathscr{B}\mathscr{K}$ is the linear span of the vectors $\{T\psi\big|T\in B,\,\psi\in\mathscr{K}\}$. $[\mathscr{B}\mathscr{K}]$ is the closure of $\mathscr{B}\mathscr{K}$ in \mathscr{H} . When $T\in\mathscr{B}(\mathscr{H})$, then $\mathscr{N}(T)$ is the null space of T and $\mathscr{R}(T)$ is the range of T.

LEMMA. Let \mathscr{H} be a separable Hilbert space and assume that A is a closed *-subalgebra of $\mathscr{B}(\mathscr{H})$ such that $[A\mathscr{H}]=\mathscr{H}$. Then there exists $T\in A$, $T\geq 0$, such that $\mathscr{N}(T)=0$.

PROOF. Since $[A\mathcal{H}]=\mathcal{H}$, then given any $\psi\in\mathcal{H}$, $\psi\neq0$, there exists $S\in A$ such that $S\psi\neq0$. Then also $S^*S\psi\neq0$. Therefore for each $\psi\in\mathcal{H}$, $\psi\neq0$, we can choose $T_\psi\in A$ such that $T_\psi\geq0$ and $T_\psi(\psi)\neq0$. Let $U_\psi=\{\xi\in\mathcal{H}|T_\psi(\xi)\neq0\}$. The collection $\{U_\psi|\psi\in\mathcal{H},\psi\neq0\}$ is an open cover for $\mathcal{H}\setminus\{0\}$. $\mathcal{H}\setminus\{0\}$ being a separable metric space is Lindelöf (every open cover has a countable subcover). It follows that there exists a sequence $\{T_n\}\subset A$ such that $T_n\geq0$ and $\bigcap_{n=1}^{+\infty}\mathcal{N}(T_n)=0$. Let $a_n=(2^n\|T_n\|)^{-1}$, and set $T=\sum_{n=1}^{+\infty}a_nT_n$. If $T\psi=0$, then $\sum_{n=1}^{+\infty}a_n(T_n\psi,\psi)=0$. Therefore $(T_n\psi,\psi)=0$ for each n. But then $T_n^{1/2}\psi=0$, which implies $T_n\psi=0$ for each n. Therefore $\psi=0$.

When D is a nonempty subset of A, we let

$$\mathscr{C}(D) = \{a \in A \mid ad = da \text{ for all } d \in D\}.$$

If D is selfadjoint, then $\mathscr{C}(D)$ is a closed *-subalgebra of A.

Theorem 1. Let $a \rightarrow \pi(a)$ be an irreducible *-representation of A on a separable Hilbert space \mathcal{H} . If ρ is a positive functional represented by π , then ρ has the restriction property.

PROOF. There exists $\xi \in \mathcal{H}$, $\|\xi\| = 1$, such that $\rho(a) = (\pi(a)\xi, \xi)$ for all $a \in A$. Let $K = \{a \in A \mid \rho(a^*a) = 0\} = \{a \in A \mid \pi(a)\xi = 0\}$. Set $A_0 = K \cap K^*$ and $\mathcal{H}_0 = \{\xi\}^{\perp}$. Given $a \in A_0$ and $\psi \in \mathcal{H}$, we have $(\pi(a)\psi, \xi) = (\psi, \pi(a^*)\xi) = 0$. Therefore $\pi(A_0)\mathcal{H} \subset \mathcal{H}_0$. Let E be the orthogonal projection of \mathcal{H} onto \mathcal{H}_0 . Then

(1)
$$E\pi(a) = \pi(a) \text{ for all } a \in A_0.$$

By [3, Corollaire (2.8.4)], $\pi(A)$ acts strictly irreducibly on \mathscr{H} . Therefore there exists $v \in A$ such that $\pi(v)\xi = \xi$. Since $\pi(v+v^*-v^*v)\xi = \xi$, we may assume that $v=v^*$. Set $u=2v-v^2$. Then $I-\pi(u)=(I-\pi(v))^2\geq 0$ where I is the identity operator on \mathscr{H} . If $\psi \in \mathscr{H}$, $((I-\pi(u))\psi, \xi)=(\psi, (I-\pi(v))^2\xi)=0$. Therefore

(2)
$$E(I - \pi(u)) = I - \pi(u).$$

Given $\psi \in \mathcal{H}_0$, the transitivity theorem [3, Théorème (2.8.3)] implies that there exists $a \in A$ such that $a = a^*$, $\pi(a) \xi = 0$, and $\pi(a) \psi = \psi$. Then $a \in A_0$, and this proves that $\pi(A_0) \mathcal{H}_0 = \mathcal{H}_0$. By the Lemma there exists $w \in A_0$, $w \ge 0$,

such that $\mathcal{N}(\pi(w)) \cap \mathcal{H}_0 = 0$. Set $S = I - \pi(u) + \pi(w)$. Since $I - \pi(u) \ge 0$, then $\mathcal{N}(S) \cap \mathcal{H}_0 = 0$. Let y = u - w, and choose C_0 a maximal commutative *-subalgebra of $C_0 \cap C_0$. Let $C_0 \cap C_0$ be the closed commutative *-subalgebra of $C_0 \cap C_0$. We prove that $C_0 \cap C_0$ is a maximal commutative *-subalgebra of $C_0 \cap C_0$. Let $C_0 \cap C_0$ is a maximal commutative *-subalgebra of $C_0 \cap C_0$. Using that $C_0 \cap C_0$ is and $C_0 \cap C_0$. Let $C_0 \cap C_0$ is and $C_0 \cap C_0$. Let $C_0 \cap C_0$ is and $C_0 \cap C_0$. Using the following that $C_0 \cap C_0$ is an $C_0 \cap C_0$. Then $C_0 \cap C_0$ is an $C_0 \cap C_0$. Then

$$(E\pi(b_0) - \pi(b_0)E)S = S\pi(b_0) - \pi(b_0)S = 0.$$

Since $\mathcal{N}(S) \cap \mathcal{H}_0 = 0$ and $S = S^*$, then $(\mathcal{R}(S))^- = \mathcal{H}_0 = \mathcal{R}(E)$. Therefore $(E\pi(b_0) - \pi(b_0)E)E = 0$. It follows that $\pi(b_0)E = E\pi(b_0)$. Then there exists a scalar λ such that $\pi(b_0)\xi = \lambda\xi$. Note that $\rho(y) = \rho(u-w) = \rho(u) = \rho(2v-v^2) = (\pi(2v-v^2)\xi, \ \xi) = 1$. Therefore $\lambda = (\pi(b_0)\xi, \ \xi) = \rho(b_0) = \rho(b-\rho(b)y) = 0$. Then $b_0 \in \mathcal{C}(y) \cap A_0$, and it follows that $b_0 \in C_0$. But then $b \in C$. This proves that C is a maximal commutative *-subalgebra of A. ρ is nonzero on C since $\rho(y) = 1$. It remains to be shown that ρ is multiplicative on C. Given $a \in C_0$, then $ya \in \mathcal{C}(y)$. Also $\pi(ya)\xi = \pi(y)\pi(a)\xi = 0$ and similarly $\pi(a^*y)\xi = 0$. Therefore ya and $(ya)^*$ are in $\mathcal{C}(y) \cap A_0$. Thus $ya \in C_0$. Furthermore $\pi(y)\xi = (\pi(u) - \pi(w))\xi = \pi(u)\xi = \xi$. Thus $\pi(y^n - y)\xi = 0$ for any positive integer n. Then $y^n - y \in \mathcal{C}(y) \cap A_0$, and therefore $y^n - y \in C_0$ for each positive integer n. It follows that every element of C has the form $\lambda y + a$ for some scalar λ and some $a \in C_0$. Then given λ , μ scalars and a, $b \in C_0$,

$$\rho((\lambda y + a)(\mu y + b)) = \lambda \mu = \rho(\lambda y + a)\rho(\mu y + b).$$

This completes the proof of the theorem.

In the case where A has an identity, the proof of Theorem 1 can be considerably simplified.

THEOREM 2. Let $a \to \pi(a)$ be a *-representation of A on a Hilbert space \mathscr{H} with the property that $\mathscr{F}(\mathscr{H}) \subseteq \pi(A)$. If ρ is a positive functional represented by π , then ρ has the restriction property.

PROOF. Assume that $\rho(a) = (\pi(a)\xi, \xi)$ for all $a \in A$, where $\xi \in \mathcal{H}$, $\|\xi\| = 1$. Let $K = \{a \in A \mid \pi(a)\xi = 0\}$, and set $A_0 = K \cap K^*$. Let E be the orthogonal projection with one dimensional range containing ξ . By hypothesis there exists $e \in A$, $e = e^*$, such that $\pi(e) = E$. Choose C_0 a maximal commutative *-subalgebra of $\mathscr{C}(e) \cap A_0$. Let C be the closed commutative *-subalgebra of A generated by e and C_0 . Assume that $b = b^* \in \mathscr{C}(C)$. Set $b_0 = b - \rho(b)e$. Note that $\rho(e) = (E\xi, \xi) = 1$, so that $\rho(b_0) = 0$. Then $\pi(b_0)E = E\pi(b_0)$. Therefore there exists a scalar λ such that $\pi(b_0)\xi = \lambda\xi$. Then $\lambda = (\pi(b_0)\xi, \xi) = \rho(b_0) = 0$. It follows that $b_0 \in \mathscr{C}(e) \cap A_0$, so that by the definition of C_0 , $b_0 \in C_0$. Then $b \in C$. This proves that C is

a maximal commutative *-subalgebra of A. The proof that ρ is a nonzero multiplicative functional on C proceeds as in the last paragraph of the proof of Theorem 1 with e in place of y.

When A is a GCR algebra (postliminaire) and $a \rightarrow \pi(a)$ is an irreducible *-representation of A on a Hilbert space \mathcal{H} , then it is well known that $\mathcal{F}(\mathcal{H}) \subset \pi(A)$; see [3, Théorème (4.3.7)]. Therefore we have as a corollary of Theorem 2:

COROLLARY. A pure state of a GCR algebra A has the restriction property.

REFERENCES

- 1. J. F. Aarnes and R. V. Kadison, Pure states and approximate identities, Proc. Amer. Math. Soc. 21 (1969), 749-752. MR 39 #1980.
- 2. C. A. Akemann, Approximate units and maximal Abelian C*-subalgebras, Pacific J. Math. 33 (1970), 543-550. MR 41 #9001.
- 3. J. Dixmier, Les C*-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404.
- 4. R. V. Kadison and I. M. Singer, Extensions of pure states, Amer. J. Math. 81 (1959), 383-400. MR 23 #A1243.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403