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PURE STATES WITH THE RESTRICTION PROPERTY
BRUCE A. BARNES!

ApsTRACT. Conditions are given which impiy that a pure state
of a B*-algebra A restricts to a pure state of some maximal com-
mutative *-subalgebra of A4.

1. Introduction. A pure state p of a B*-algebra A has the restriction
property if there exists a maximal commutative *-subalgebra C of 4 such
that the restriction of p to C is a pure state of C (i.e. p is a nonzero multi-
plicative linear functional on C). The work of R. Kadison and I. Singer in
[4] raises the question of whether or not each pure state of a B*-algebra
has the restriction property. This question was answered by J. Aarnes and
R. Kadison for a special class of B*-algebras A. They prove that when 4 is
separable and has an identity, then each pure state of 4 has the restriction
property [1, Theorem 2]. Again in the case when A is separable, C.
Akemann in [2] removed the requirement that 4 have an identity and made
other improvements in the result of Aarnes ang Kadison (including a
proof that in this case a pure state p of 4 is the urique extension of a pure
state of some maximal commutative *-subalgebra.of 4). However, the
general question remains open. '

In this note we give several new conditions on a pure state p of a B*-
algebra which imply that p has the restriction property. 4 is a B*-algebra
throughout. Let a—m(a) be a *-representation of 4 on a Hilbert space J#.
A positive functional p is represented by = if there is e3¢, ||£]|=1, such
that p(a)=(m(a)&, &) for all acA. A pure state of 4 is always represented by
some irreducible *-representation of A; see [3, pp. 32, 33, 37] for details.
Now let p be a pure state of 4 which is represented by an irreducible
*-representation m of 4 on a Hilbert space #. We prove that if either 2
is separable or 7(A4) contains & (#), the algebra of bounded operators
on 5 with finite dimensional range, then p has the restriction property.
The proofs of these results are indebted to the ideas of Aarnes and Kadison
in [1].

2. The results. Let be 5# a Hilbert space. () is the algebra
of bounded operators on . When ¢ is a subspace of # and B is a
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nonempty subset of Z(5#), then BX  is the linear span of the vectors
{Ty|TeB, yeX'}. [BXA] is the closure of BX" in S#. When TeZ(X),
then A"(T) is the null space of T and Z(T) is the range of T.

LeMMA. Let ¥ be a separable Hilbert space and assume that A is a
closed *-subalgebra of B(H) such that [AH|=H. Then there exists
Ted, T=0, such that A" (T)=0.

PrOOF. Since [A#]=J¢, then given any ye#, p#0, there exists
SeA such that Syp0. Then also S*Sys0. Therefore for each yeif,
p#0, we can choose T, €4 such that 7,20 and T,(y)#0. Let U,=
{£e#|T,(£)#0}. The collection {U,|lye#’, p>0} is an open cover for
H#\{0}. H#\{0} being a separable metric space is Lindeldf (every open
cover has a countable subcover). It follows that there exists a sequence
{T,}<= A such that T, 20 and NrS A(T,)=0. Let a,=(2"|T,|), and
set T=3+2a, T, If Ty=0,then 3;2 a,(T,p, v)=0. Therefore (T,p, y)=
0 for each n. But then T/*p=0, which implies T,,=0 for each n. Therefore
p=0.

When D is a nonempty subset of 4, we let

(D) = {ac A| ad = da for all d € D}.
If D is selfadjoint, then € (D) is a closed *-subalgebra of 4.

THEOREM 1. Let a—m(a) be an irreducible *-representation of A on a
separable Hilbert space . If p is a positive functional represented by ,
then p has the restriction property.

ProoF. There exists ée5#, | £]|=1, such that p(a)=(m(a)é&, &) for all
acA. Let K={acA|p(a*a)=0}={acA|m(a)é=0}. Set A,=KNK* and
Ho={&}+. Given a€d, and ye¥’, we have (m(a)y, &)= (y, 7(a*)&)=0.
Therefore m(Ay)# = ,. Let E be the orthogonal projection of J# onto
Hy. Then

¢)) Em(a) = w(a) for all ae A4,.

By [3, Corollaire (2.8.4)], m(4) acts strictly irreducibly on >#. Therefore
there exists veA such that w(v)é=§&. Since m(v+v*—v*r)§=¥, we may
assume that v=v*. Set u=2v—0v2 Then [—m(u)=([—m(v))*=0 where [ is
the identity operator on . If ye i, (I—=(u))y, &)= (yp, (I—m(v))*&)=0.
Therefore

2 E(I — 7w(w)) = I — =(u).

Given ye¥,, the transitivity theorem [3, Théoréme (2.8.3)] implies that
there exists a€A such that a=a*, m(@)§=0, and =(a)p=y. Then ae4,, and
this proves that 7(4,)#°y=",. By the Lemma there exists we4,, w=0,
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such that A (w(W))NH#y=0. Set S=I—m(u)+m(w). Since I—=(u)=0,
then A7 (S)NA°,=0. Let y=wu—1, and choose C, a maximal commutative
*-subalgebra of €' ()N A4,. Let C be the closed commutative *-subalgebra
of A4 generated by y and C,. We prove that C is a maximal commutative
*-subalgebra of 4. Assume that b=>* and be%(C). Let by=>b— p(b)y. Then
by=>bg and b,c%(C). Using (1) and (2) we have ES=E(/—m(u)+m(w))=
I—=m(u)+7n(w)=S. Also 7(by)S=Sm(b,). Then

(Em(bo) — m(bo)E)S = Sm(bo) — m(be)S = 0.

Since A7(S)N#F =0 and S=S*, then (A(S)) =#y=A(E). There-
fore (Em(by)—m(by)E)E=0. It follows that m(by)E=Em(b,). Then there
exists a scalar 4 such that w(b)é=A£ Note that p(y)=p(u—w)=
p(u)=pQv—1Y)=(w(2v—1v*)¢&, £)=1. Therefore A= (m(by)¢, &)=p(by)=
p(b—p(b)y)=0. Then b€ (¥)NA,, and it follows that byeC,. But then
beC. This proves that C is a maximal commutative *-subalgebra of A.

p is nonzero on C since p(y)=1. It remains to be shown that p is
multiplicative on C. Given aeC,, then yac% (y). Also 7(ya)é=n(y)m(a)s =0
and similarly 7(a*y)&=0. Therefore ya and (ya)* are in € (y)N A4,. Thus
yaeC,. Furthermore #(y)&=(m(u)—n(w))é=m(u)é=§. Thus n(y"—y)£=0
for any positive integer n. Then y"—ye®€(y)N A4, and therefore y"—yeC,
for each positive integer n. It follows that every element of C has the form
Ay+a for some scalar 2 and some aeC,. Then given 4, u scalars and a,
beC,,

p((2y + a)(uy+b)) = Au = p(Ay + a)p(uy + b).

This completes the proof of the theorem.
In the case where 4 has an identity, the proof of Theorem 1 can be
considerably simplified.

THEOREM 2. Let a—m(a) be a *-representation of A on a Hilbert space
H#° with the property that & (#)<==(A). If p is a positive functional rep-
resented by m, then p has the restriction property.

PrOOF. Assume that p(a)=(=(a)&, &) for all acA, where &£es#,
[&=1. Let K={acA|m(a)é=0}, and set A,=KNK* Let E be the
orthogonal projection with one dimensional range containing &. By
hypothesis there exists ec4, e=e*. such that =(e)=E. Choose C, a
maximal commutative *-subalgebra of %(e)NA, Let C be the closed
commutative *-subalgebra of A generated by e and C,. Assume that
b=b*c%(C). Set by=b—p(b)e. Note that p(e)=(E¢, £)=1, so that
p(by)=0. Then m(bg)E=Ewm(dy). Therefore there exists a scalar 4 such
that 7(by)é=A&. Then A=(m(by)é, &)= p(be)=0. It follows that be¥'(e)N
Ay, so that by the definition of C,, b,eC,. Then beC. This proves that C is
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a maximal commutative *-subalgebra of 4. The proof that p is a nonzero
multiplicative functional on C proceeds as in the last paragraph of the
proof of Theorem 1 with e in place of y.

When 4 is a GCR algebra (postliminaire) and a—m(a) is an irreducible
*-representation of 4 on a Hilbert space S, then it is well known that
F (H)<m(A); see [3, Théoréme (4.3.7)]. Therefore we have as a corollary
of Theorem 2:

COROLLARY. A pure state of a GCR algebra A has the restriction

property.
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