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ANNIHILATOR IDEALS IN THE COHOMOLOGY
OF BANACH ALGEBRAS

A. M. SINCLAIR

ABSTRACT. If A4 isa C*-algebra, if X is a Banach 4-module, and
if J is the annihilator of X in A4, then the cohomology space
#"(A4, X*)is isomorphic to #"(4/J, X *) for each positive integer n.

B. E. Johnson [S, Proposition 1.8] has shown that if 4 is a Banach
algebra with a bounded approximate identity and if X is a Banach 4-
module, then X;={axb:x € X; a, b € A} is a closed neo-unital submodule
of X and #"(4, X*) is isomorphic to #"(4, X{). In particular this
result shows that in calculating cohomologies of dual Banach modules for
C*-algebras attention may be restricted to neo-unital modules. Since each
closed (two-sided) ideal in a C*-algebra has a bounded approximate
identity [2, Propositions 1.8.2 and 1.7.2] our result shows that for C*-
algebras and dual Banach modules attention may be restricted to faithful
modules. If 4 is a Banach algebra, if X is a Banach 4-module, and if Jis a
closed ideal in 4 annihilating X, then there is a natural homomorphism Q,
which is defined in Theorem 1, from S#"(A[J, X*) into H#™(A4, X*).
Under the additional assumption that J has a bounded approximate
identity, this homomorphism Q is an isomorphism (Theorem 1). In
Remark 4 we give an elementary example to show that an additional
assumption on J is necessary if the conclusion of Theorem 1 is to hold.

I am grateful to B. E. Johnson for a preprint of [5], and I acknowledge
a C.S.I.R. travel grant.

If 4 is a Banach algebra, if X is a Banach 4-module, and if n is a positive
integer, we let £"(4, X'*) denote the Banach space of continuous n-linear
mappings from A into X*, the dual of X (our notation and definitions are
from [5]). Recall that #"(4, X*) is the dual space of a Banach space
A&A%- - -@AGX (see [5]). We also give X* the dual A-module structure
from the Banach 4-module X by defining af and fa for ain 4 and fin X'*
by

af,x) = (f,xa) and (fa,x) = (f, ax)
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for all x in X. The mapping 0" from Z"1(4, X*) to £™(4, X*) is
defined by

(6nT)(al, Y an) = alT(a2a T, an)
n—1

(1) +jzl(—1)jT(01, RPN P17 P XS PR an)

+ (_l)nT(al, Y an—l)an

for T in £"1(4, X*), which we take to be X* when n—1=0, and for
a,, -+ ,a,in A. Then §"*16"=0, and we let

(4, X*) = Ker 6"1/Im 6.

We use the same 6" for all algebras and modules. We say that an ideal
J in a Banach algebra A4 annihilates a Banach A-module X if ax=xa=0
for all ainJ and x in X. If the closed ideal J annihilates X, we regard X as
a Banach A4//-module by defining (a+J)x=ax and x(a+J)=xa for all
ain 4 and x in X.

THEOREM 1. Let A be a Banach algebra, let X be a Banach A-module,
and let J be a closed ideal in A annihilating X. If J has a bounded approxi-
mate identity, then H™(AlJ, X*) is isomorphic to H#™(A, X*) under the
mapping

Q:T+ Im 6" — 0T + Im 6"
where (0T)(ay, - ,a,)=T(a,+J, -+, a,+J) for T in L"*(A|J, X*) and
a,:-*,a,inA.

We require a lemma before proving Theorem 1. Under the hypotheses

of Theorem 1 we shall regard #*(4/J, X*) as a Banach 4-module by

defining aT and Ta, for all a in 4 and T in £*(A[J, X*), by
@ @T)(b +J)=aT(b +J) and
(Tayb+J)=T(ab +J)— T(a + J)b

for all b in A. Compare the following lemma with [5, 1.a].

LEMMA 2. Let A be a Banach algebra, let X be a Banach A-module,
and let J be a closed ideal in A annihilating X. Let n be an integer greater than
1. If J has a bounded approximate identity, then #"1(A, L (A|J, X*)) is
isomorphic to H#"(A, X*) under the mapping y:T+Im 6" -y, T+Im 6"
where

(3) (’PnT)(an T, an) = T(al’ Y an—l)(an + J)
for all T in L™ YA, LY A|J, X*))and all ay, - - - , a, in A.
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PrROOF. A routine calculation using equations (1), (2), and (3) shows
that

G Pasr0" = 0"y,

for n a positive integer. Applying equation (4) with n replaced by n—1 we

observe that the mapping y is well defined. Using (4) as it stands we cb-

serve that y maps J#"(4, #*(A4/J, X*)) into #"(4, X*). We now use

the bounded approximate identity in J to show that x is an isomorphism.
We shall show that there is an R in £"1(4, X*) with

(5) (T - O"R)((ll, ttT an) = 0

if a,, is in J. If we have found such an R, then equation (5) implies that
T—4"™R is in the image of y,,, and so there is a P in £"1(4, L* (4[], X*))
with y,P=T—46"R. From equation (4) we obtain

Yar6"P = %1y P = §"+(T — 6"R) = 0,

and thus 6"P=0 because y, ., is a monomorphism. Therefore y is an
epimorphism.

Let Tbe in £"*(A4, X*) with 6"*'T=0, and let {¢,} be a bounded approxi-
mate identity in J. Now £"(4, X*) may be regarded as the dual space of
A®- - -©A®X, where there are n-copies of A, and under this identifica-
tion the weak-*-topology on #"(4, X*) is generated by the seminorms
S—(S(ay, - - - , a,), x) where (-, ) denotes the pairing of X and X*, and
a,, - ,a,are in 4 and x is in X (see [5, §1]). Now {T(-,---,e)} is a
bounded net in #"~*(4, X*) and hence has a subnet convergent in the
weak-*-topology of #"-1(4, X*). For convenience, we take {T(-, - * * , &,)}
itself to be convergent in the weak-*-topology to an element (—1)"*'R
in £"1(A4, X*). All limits in this prcof are over the directed set corre-
sponding to the net {e,} and are in the weak-*-topology in X*.

Using 6" T(ay, - - -, a,, €,)=0, equation (1), and the definition of
R, we obtain

anR(ala T, an)
n—1

= (_ 1)"+11im<alT(a2‘ T, Ay, ea) + Z (— l)jT(al’ Ct5@54541,0 "5 Ay, ea)

j=1
+ (— l)nT(als CtyApyy ea)an

= (—l)n hm{(—l)"T(al’ s Apy, anea) + (_ 1)”+1T(01, Ty an)ea

+ (- l)n-HT(a;, Ty dpeys ea)an}
= T(ab e 5an)

provided a,, is in J. This proves equation (5).
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We shall now prove that y is one-to-one. We let T be in
LA, LA, X))

with 9, T=06"S where S is some element of £"~1(4, X*). We shall obtain
an R in #"%(4, X*) such that

(6) (§—0"'R)(ay, -+ ,a,.) =0

ifa,_, is inJ. Having found such an R there is a P in £"~%(4, L' (A|J, X*))
such that ¢, ,P=S—0""'R. From this and equation (4) we obtain
v, T=0"S=0"y,_ P+ 0"0"'R=y,0""1P. Because y, is a monomorphism,
T is equal to 6"1P.

We let T be in £"1(A4, LY (A}J, X*)) with p, T=06"S where S is some
element of £"~1(4, X*). As in the above proof that y is an epimorphism,
there is a bounded approximate identity {e,} inJand an R in £"%(4, X'*)
such that

R(ab T an—2) = (—l)" lim S(al’ RN 2 P ea)
forallay,, -+ ,a, ,in A.Ifa, ,isinJand ifay, -, a,_, arein A4, then

6n—lR(a1’ T, an-—l)
= (_1)"l lim als(a2’ Y ez) + Z(—l)js(ala Y 717 NN P S Y ea)

j=1

+ (_ l)n—ls(al’ Ty Apgs ea)an—l}
= (_ l)n lim{éns(al’ Ty Apers ez) + (_ l)ns(al’ Ct,Qp_g, an—lea)}

because a,_, and e, are in J, which annihilates X*. Since 6"S=v,T, it
follows that 6"S(a;, - - -, a,_,, e,)=0 because e, is in J. This completes
the proof of the lemma.

Proor oF THEOREM 1. The definitions of 6 and 6" imply that 6"0=600".
Thus the mapping Q, defined in the statement of the theorem, is a well
defined homomorphism from J#"(A4/J, X*) into # "(4, X*). We shall
prove that Q is an isomorphism by induction on n over all Banach
A-modules that are annihilated by J.

Now we consider n=1. If fis in X*, then 0'(f)(a)=af—fa=(a+J)f—
fla+D)=0'(f)(a+J)=(06'(f))(a) by definition of &', so that 6 Im é'=
Im 6% If D is in Ker 62, which is contained in .#*(4, X*), then D(ab)=
D(a)b+aD(b) for all a, b in A by definition of 62. If ¢ is in J, then by
Cohen’s Factorization Theorem [1] we have ¢=ab for some a and b in J.
Thus D(c)=aD(b)+ D(a)b=0 because J annihilates X*. We may now
define an operator T in £(4/J, X*) by T(a+J)=D(a) for alla in A. Then
€ =D, and 6*T=0. This shows that Q is an isomorphism for n=1.
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Suppose the result has been proved for n. We firstly observe that
F1AJJ, X*)is, as a Banach 4-module, the dual of the Banach 4-module
Y=(A4/J)Z X, the projective tensor product of Banach spaces [5, §1],
where we define the module operations on generating elements (a+J)®x
of the tensor product by

bla+ ))& x)=((ba+J)ex—(b+J)&ax and

@) ((a+J) i‘ \)b =(a+J) ,: xb

and lift the definitions to Y by linearity and continuity. Because J an-
nihilates X, equations (7) imply that J annihilates the 4-module Y. Now
by Lemma 2, our inductive hypothesis on n, and the reduction of dimen-
sion lemma for cohomology [5, 1(a)]. the following isomorphisms hold:

H A, X*) = H (A, LA, X)) = H (AN, LAV, X*))
=~ A A, X*).

Each of these isomorphisms is the natural one arising from the quotient
A[J. Thus Q is an isomorphism for n+1. This completes the proof.

Our corollary generalizes [4, Theorems 4.1 and 4.2] from n=1 and 2
to any positive integer n.

COROLLARY 3. Let A be a Banach algebra in which each closed cofinite
ideal has a bounded approximate identity. If X is a finite dimensional Banach
A-module and n is a positive integer, then 5 "(A, X)={0}.

Proor. The annihilator J of X is a closed cofinite ideal in 4, and X
is the dual of the Banach 4-module X*. By Theorem 1, we have 5#"(4, X)
isomorphic to s# ™(4/J, X). An ideal in 4/J is of the form I/J, where Iis a
closed cofinite ideal in 4 containing J. Since I has a bounded approximate
identity, I2 is equal to I by Cohen’s Factorization Theorem [1]. This shows
that A/J is a finite dimensional semisimple algebra. As every n-linear
operator from A// into X is continuous, #"(4/J, X) coincides with
Hochschild’s cohomology groups [3] for the A//-module X. Hochschild’s
nth-cohomology group for the A/J-module X is null [3, Theorem 4.1],
and so #"(4, X)={0}.

REMARK 4. We now outline an example which shows that some
assumption on J like that of a bounded approximate identity is necessary
if the conclusion of Theorem 1 is to hold. Let X be a (finite dimensional)
Banach space, and let X have the zero product (xy=0 for all x, y in X).
Let A4 be the Banach algebra obtained by adjoining an identity to X, and
let the ideal J be X. We regard X as an 4-module with the natural module
operations. Then 4/J is equal to C1, and so 5#(4/J, X*) is zero as may
be proved in a number of ways (for example [3, Theorem 4.1]). However
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for the algebra 4 we obtain Im ¢* is {0}, and Ker 6% is £*(J, X*), so that
HYA, X*)=L1(J, X*) and the conclusion of Theorem 1 does not hold.
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