NORMABILITY OF CERTAIN TOPOLOGICAL RINGS

SETH WARNER¹

ABSTRACT. Criteria are given for the normability of certain topological rings. These criteria yield generalizations of known theorems on the normability of compact integral domains and topological fields.

In [6, Theorem 7], Z. S. Lipkina proved that the topology of a metrizable, compact ring A with identity and without zero-divisors is given by a norm, i.e., a function $\| \|$ from A into the nonnegative real numbers satisfying $\|x\|=0$ if and only if x=0, $\|-x\|=\|x\|$, $\|x+y\| \le \|x\|+\|y\|$, and $\|xy\| \le \|x\| \|y\|$ for all $x, y \in A$. Her proof depended upon exhibiting A as a quotient ring of a certain power series ring in countably many noncommuting variables over a coefficient ring whose elements did not, however, commute with the variables. Here we shall give an elementary proof of a generalization of her result concerning normability.

A function v defined on a ring A is a natural pseudovaluation if the range of v is contained in the natural numbers together with $+\infty$ and if for all $x, y \in A$, $v(x) = +\infty$ if and only if x = 0, v(-x) = v(x), $v(x+y) \ge \min\{v(x), v(y)\}$, and $v(xy) \ge v(x) + v(y)$. Clearly the exponential of a natural pseudovaluation to a base <1 is a nonarchimedean norm satisfying $||x|| \le 1$ for all $x \in A$. An ideal a in a topological ring is topologically nilpotent if the filter base formed by its powers converges to zero.

THEOREM 1. The topology of a topological ring A is defined by a natural pseudovaluation if and only if the following three conditions hold:

- 1° A is metrizable.
- 2° The open ideals of A form a fundamental system of neighborhoods of zero.
 - 3° A contains an open, topologically nilpotent ideal.

PROOF. Necessity. Let $a_n = \{x \in A : v(x) \ge n\}$. Then $\{a_n\}_{n \ge 1}$ is a fundamental system of neighborhoods of zero, each a_n is an ideal, and $a_1^n \subseteq a_n$ for all $n \ge 1$.

Received by the editors June 16, 1971.

AMS 1970 subject classifications. Primary 46H05, 16A80.

Key words and phrases. Norm, pseudovaluation, topological ring, compact ring.

¹ Written while the author was in residence at Reed College.

Sufficiency. Let r be an open, topologically nilpotent ideal; by 1° and 2° there is a fundamental decreasing sequence $\{a_k\}_{k\geq 1}$ of ideal neighborhoods of zero each contained in r. For each $n \ge 1$ let $\mathfrak{b}_n = \sum \mathfrak{a}_{k_1} \mathfrak{a}_{k_2} \cdots \mathfrak{a}_{k_r}$, the sum extending over all r-tuples (k_1, k_2, \dots, k_r) such that $1 \le r \le n$, $1 \le k_i \le n$ for all $i \in [1, r]$, and $k_1 + k_2 + \cdots + k_r = n$. Since a_n is one of those summands, $a_n \subseteq b_n$. Thus b_n is an open ideal of A. Clearly $b_n b_m \subseteq$ \mathfrak{b}_{n+m} for all $n, m \ge 1$. If $n \ge m$, then $\mathfrak{b}_n \subseteq \mathfrak{b}_m$, for if $k_1 + \cdots + k_r = n$, we may find, for some $s \le r$, positive integers j_1, \dots, j_s such that $j_i \le k_i$ for all $i \in [1, s]$ and $j_1 + \cdots + j_s = m$, whence $a_{k_1} \cdots a_{k_r} \subseteq a_{j_1} \cdots a_{j_s} \subseteq b_m$. We shall next show that $b_{n^2} \subseteq r^n + a_{n+1}$. Let $k_1 + \cdots + k_r = n^2$. If each $k_i \le n$, then $n^2 = k_1 + \dots + k_r \le nr$, so $n \le r$, whence $a_{k_1} \cdots a_{k_r} \subseteq r^r \subseteq r^n$. If $k_i \ge n+1$ for some i, then $a_{k_1} \cdots a_{k_r} \subseteq a_{k_i} \subseteq a_{n+1}$. Therefore $b_{n^2} \subseteq r^n + a_{n+1}$. Given m, let n be so large that $n+1 \ge m$ and $r^n \subseteq a_m$; then $b_{n^2} \subseteq a_m$. Hence $\{b_n\}_{n \ge 1}$ is a fundamental system of ideal neighborhoods of zero of A satisfying $\mathfrak{b}_n \mathfrak{b}_m \subseteq \mathfrak{b}_{n+m}$ for all $n, m \ge 1$. Therefore the function v defined by v(x) = 0if $x \notin b_1$, v(x) = n if $x \in b_n$ but $x \notin b_{n+1}$, $v(0) = +\infty$ is a natural pseudovaluation defining the topology of A.

A topologically artinian ring is a Hausdorff topological ring A such that the open left ideals of A form a fundamental system of neighborhoods of zero and for every open left ideal a, the left A-module A/a is artinian (it is not necessary to assume here that A has an identity element). The complete topologically artinian rings are precisely the strictly linearly compact rings [2, p. 111] (called "im engeren Sinne linear kompakt" rings in [5]).

Theorem 2. If A is a topologically artinian ring and if every open left ideal contains an open ideal, then the radical x of A is topologically nilpotent.

PROOF. Let b be an open ideal of A; then A/b is an artinian ring and hence has a nilpotent radical. Since (r+b)/b is contained in the radical of A/b, we conclude that $r^n \subseteq b$ for some $n \ge 1$. Thus r is topologically nilpotent.

A norm is bounded if its values are contained in a bounded interval.

THEOREM 3. Let A be a strictly linearly compact ring, and let τ be the radical of A. The following statements are equivalent:

- 1° The topology of A is defined by a bounded, nonarchimedean norm.
- 2° The topology of A is defined by a norm, and every open left ideal contains an open ideal.
- 3° A is metrizable, x is open, and every open left ideal contains an open ideal.
 - 4° The topology of A is defined by a natural pseudovaluation.

PROOF. For a given norm, let B_s denote the closed ball of center 0 and radius s. To show that 1° implies 2°, let $\| \cdot \|$ be a nonarchimedean

norm satisfying $||x|| \le c$ for all $x \in A$, where $c \ge 1$. Then for any t > 0, the ideal generated by B_{t/c^2} is contained in B_t , since $||ax|| \le t/c$, $||xb|| \le t/c$, and $||axb|| \le t$ for all $x \in B_{t/c^2}$ and all $a, b \in A$. Thus 2° holds.

If 2° holds, then $B_{1/2}$ contains an open ideal n; clearly $\lim x^n = 0$ for all $x \in \mathbb{N}$, so $n \subseteq r$ by [4, Corollary, Theorem 12] as A is complete, whence 3° holds. By Theorems 1 and 2, 3° implies 4° , and clearly 4° implies 1° .

COROLLARY 1. Conditions 1° , 2° , and 4° of Theorem 3 are equivalent for a topologically artinian ring.

PROOF. We need only apply Theorem 3 to the completion of a topologically artinian ring, since the completion is clearly strictly linearly compact.

COROLLARY 2 Let A be a totally disconnected compact ring, and let x be the radical of A. The following statements are equivalent:

- 1° The topology of A is defined by a norm.
- 2° A is metrizable and x is open.
- 3° The topology of A is defined by a natural pseudovaluation.

PROOF. The open ideals of A form a fundamental system of neighborhoods of zero [4, Lemma 9], so A is strictly linearly compact since A/b is a finite ring for any open ideal b.

A compact ring with identity is totally disconnected, [4, Theorem 8] and if it has no divisors of zero, its radical is open [4, Theorem 19]. Hence Corollary 2 generalizes [6, Theorem 7].

Here is an example of a commutative, metrizable, linearly compact ring with open radical whose topology is not given by a norm: Let A = K[[X, Y]], the ring of formal power series in two variables over a field K. Since A is a local noetherian domain complete for the topology defined by the powers of its radical r=(X)+(Y), A is linearly compact for the discrete topology [7, pp. 271-272] and hence for any weaker, Hausdorff linear topology (cf. [2, Exercises 14-20, pp. 108-111], [5]). Moreover, A is a unique factorization domain [7, Theorem 6, p. 148]. Let $(p_n)_{n\geq 1}$ be a sequence of irreducible elements no two of which are associates (e.g., let $p_n = X + Y^n$), let a_n be the principal ideal generated by $p_1 \cdots p_n$, and let \mathcal{F} be the topology on A for which $\{a_n\}_{n\geq 1}$ is a fundamental system of neighborhoods of zero. As A is a unique factorization domain, $\bigcap_{n\geq 1} a_n = (0)$; as A is local, $a_1 \subseteq \mathfrak{r}$. Equipped with topology \mathscr{F} , therefore, A is a commutative, linearly compact, metrizable ring with open radical. If \mathcal{F} were defined by a norm, then $\{x \in A : \lim x^n = 0\}$ would be a neighborhood of zero and hence would contain a_m for some m; therefore $\lim_{n} (p_1 \cdots p_m)^n = 0$, and in particular, $(p_1 \cdots p_m)^n \in \mathfrak{a}_{m+1}$ for

some n, whence p_{m+1} would divide $p_1^n \cdots p_m^n$, a contradiction of the fact that A is a unique factorization domain.

We note finally that P. M. Cohn's criterion for the normability of a topological field may be extended to topological rings. A subset B of a topological ring is bounded if for every neighborhood V of zero there is a neighborhood U of zero such that $UB \subseteq V$ and $BU \subseteq V$. Our proof of the following theorem is a simplification of proofs in [3].

THEOREM 4. Let A be a Hausdorff topological ring whose center contains a cancellable element a such that $x\mapsto ax$ is an open mapping and $\lim a^n=0$. If A has a bounded neighborhood of zero [a bounded, open additive subgroup], then the topology of A is defined by a norm [a non-archimedean norm].

PROOF. Let A_1 be the rings of all the fractions x/y, where $x \in A$ and where y is a cancellable element of A belonging to the center of A such that $z \mapsto zy$ is an open mapping, topologized by declaring the neighborhoods of zero in A a fundamental system of neighborhoods of zero in A_1 . Clearly A_1 is a topological ring containing A as an open subring; consequently, replacing A with A_1 , if necessary, we may assume that A is invertible in A.

Let V be a bounded neighborhood of zero. Replacing V by $V \cap (-V)$, if necessary, we may assume that V is symmetric. Let $U = \{x \in A : xV \subseteq V\}$. As V is symmetric and bounded, U is a symmetric neighborhood of zero. To show that U is bounded, let W be a neighborhood of zero. As V is bounded, there exists a neighborhood T of zero such that $TV \subseteq W$, $VT \subseteq W$; as $\lim a^n = 0$, $a^k \in V$ for some k; hence a^kT is a neighborhood of zero, and $Ua^kT \subseteq VT \subseteq W$, and similarly $a^kTU = TUa^k \subseteq W$. Thus U is a bounded symmetric neighborhood of zero that clearly satisfies $UU \subseteq U$. Let U_1 be a neighborhood of zero such that $U_1 \subseteq U$ and $U_1U + U_1U + U_1U \subseteq U$; replacing a by a power of a, if necessary, we may assume that $a \in U_1$; then $aU + aU + aU \subseteq U$. Clearly $(a^kU)_{k \in \mathbb{Z}}$ is a decreasing sequence of neighborhoods of zero; it is a fundamental system of neighborhoods of zero, for if Y is a neighborhood of zero, there exists a neighborhood Z of zero such that $ZU \subseteq Y$ as U is bounded, and there exists $t \ge 0$ such that $a^t \in Z$ since $\lim a^n = 0$, whence $a^tU \subseteq ZU \subseteq Y$. In particular, $\bigcap_{k \ge 0} a^k U = (0)$.

Let g(0)=0, and for each nonzero $x\in A$ let $g(x)=2^{-k}$, where k is the largest of the integers j such that $x\in a^jU$ (such an integer exists, for as $\lim a^nx=0$, $x\in a^{-n}U$ for some $n\ge 0$). If V is an additive subgroup, then U is a subring, and g is clearly a nonarchimedean norm defining the topology of A.

In general, let $f(x)=\inf\{\sum_{i=1}^p g(z_i): z_1+\cdots+z_p=x\}$. Since aU+aU+aU=U, $a^{n+1}U+a^{n+1}U+a^{n+1}U=a^nU$ for all $n\in\mathbb{Z}$; by the argument

of [1, Proposition 2, p. 15], f is a norm defining the topology of the additive group A (by induction on p, one shows that $\frac{1}{2}g(\sum_{i=1}^p z_i) \le \sum_{i=1}^p g(z_i)$). Since $a \in U$ and $UU \subseteq U$, $g(xy) \le g(x)g(y)$ for all x, $y \in A$, whence $f(xy) \le f(x)f(y)$; thus f is a norm defining the topology of the ring A.

COROLLARY [3, THEOREMS 6.1 AND 7.1]. The topology of an indiscrete, Hausdorff topological field K is defined by a norm [a nonarchimedean norm] if and only if there is a nonzero element a of K such that $\lim_{n \to \infty} a^n = 0$ and K contains a bounded neighborhood of zero [a bounded, open additive subgroup].

REFERENCES

- 1. N. Bourbaki, Eléments de mathématique. I: Les structures fondamentales de l'analyse. Fasc. VII, Livre III: Utilisation des nombres réels en topologie générale, 2ième éd., Actualités Sci. Indust., no. 1045, Hermann, Paris, 1958. MR 30 #3439.
- 2. ——, Eléments de mathématique. Fasc. XXVIII. Algèbre commutative. Chaps. 3, 4, Actualités Sci. Indust., no. 1293, Hermann, Paris, 1961. MR 30 #2027.
- 3. P. M. Cohn, An invariant characterization of pseudo-valuations on a field, Proc. Cambridge Philos. Soc. 50 (1954), 159-177. MR 16, 214.
- 4. Irving Kaplansky, Topological rings, Amer. J. Math. 69 (1947), 153-183. MR 8, 434.
- 5. Horst Leptin, Linear kompakte Moduln und Ringe, Math. Z. 62 (1955), 241-267. MR 16, 1085.
- 6. Z. S. Lipkina, Locally bicompact rings without zero divisors, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 1239-1262=Math. USSR Izv. 1 (1967), 1187-1208. MR 36 #2657.
- 7. Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #11006.

DEPARTMENT OF MATHEMATICS, DUKE UNIVERSITY, DURHAM, NORTH CAROLINA 27706