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ON OSCILLATIONS FOR SOLUTIONS OF
»TH ORDER DIFFERENTIAL EQUATIONS

H. 0N0SE

Abstract. Necessary and sufficient conditions are given that all

solutions of x""+f(t, x, x', ■ ■ ■ ,a''"_:,)=0 are oscillatory for n

even and are oscillatory or tend monotonically to zero as /-*oo for

n odd. The results generalize recent results of J. S. W. Wong and

G. H. Ryder and D. V. V. Wend.

1. Introduction. In this paper we are dealing with differential equations

of the form

(*) x<n>+/(/,Jc,Jc',---,x<"-2)) = 0,

where/is continuous in [a, co)x/?n_1, a_0.

We consider only nontriviai solutions of (*) which are indefinitely con-

tinuable to the right. A solution of (*) is said to be oscillatory if it has

arbitrarily large zeros and nonoscillatory if it is eventually of constant

sign. The equation (*) is said to be oscillatory if every solution of (*) is

oscillatory. Recently, the present author [1] gave a definition, called

generalized strongly continuous, which is a generalization of Wong's [4]

definition and discussed the oscillatory properties of (*). A function

fit, x,, • • • , xT1_,) is called generalized strongly continuous from the left

at xlc iff(t, xlt ■ • ■ , xn_f) is continuous in [a, co)x J?"-1, a^O, and for

each £>0 there exists ó>0, 7~_0 and xfe[xlc—è, xlc] such that for all

xxe[xxc~à, xlc], for all xt satisfying \x,~ki\^ó (kt are arbitrary real

constants) for i=2, • • • , n— 1, and for all t^T,

(1 - e)f(t, xf, k2, ■ ■ ■ , kn_f) </(/, xlt ■•• , *„_,)

< (1 + e)f(t, xu, k2, ■ ■ ■ , kn_f).

Generalized strong continuity from the right at xu is defined analogously.

A function/(i, xit • • •, xn_f) is said to be generalized strongly continuous

at xlc if it is generalized strongly continuous both from the left and from

the right at xlc.
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The purpose of this paper is to extend Wong's [4, Theorem 4] result

to the arbitrary wth order equation (*). The results of this paper also

extend recent results of Ryder and Wend [3].

For convenience in stating our theorems, we list the following con-

ditions :

(1) Xxf(t, xx,---, xn_x) > 0       (xx ¥> 0),

*<"> + f(t, x,x',--, x<"-2>, x«"-1») = 0,

where/is continuous in [a, co) x Rn, a _^ 0,

(3) there exists constants c (t^O) and k2, • • • , &„_, such that

Iftn~xf(t, c,k2,---, kn_x) dt

2. Nonoscillation theorems.

< co.

Theorem A [1]. Assume that n is even and that condition (1) holds. Let

f(t, Xx, • • • , xn_x) be generalized strongly continuous from the left for

Xx>0 and generalized strongly continuous from the right for Xj<0. Then

condition (3) is a necessary and sufficient condition for equation (*) to have

a bounded nonoscillatory solution.

Theorem 1. Assume that n is odd and that condition (1) holds. Let

f(t, Xx, ■ ■ ■ , x„_r) be generalized strongly continuous.

Then condition (3) is a necessary and sufficient condition for equation (*)

to have a bounded nonoscillatory solution which does not tend monotonically

to zero as r—>-oo.

Proof of Theorem 1. Suppose x(t) is a bounded nonoscillatory

solution which does not tend monotonically to zero as r—»-co. Assume

without loss of generality, x(t)>0. As in the proof of Theorem 1 of

Ryder and Wend [3], by the boundedness of x(t), we have the following:

(4) lint x(i)(i) = 0       (f = 1, 2, • • • , n - 1),
t-OO

\n-2

(5)    -x'(0 = I"* 7-7^r/(«. *("), x'(u), ■■■, x(n-2,(u)) du = 0.
Jt    (n — 2):

By (5), x(t) decreases to a limit L_0 and by the assumptions on x(t),

£>0. Integrating (5) from F to x, we have

(6)   x(t)>x(t)-L^
(« - T)"-1 „      , .    „ . .m

T    (n-l)
f(u, x(u), x'(u), ■■■, x"—(ii)) du.



1972] SOLUTIONS  OF  77TH  ORDER  DIFFERENTIAL  EQUATIONS 497

The generalized strong continuity of f(t. x1, x2, • ■ • , xn_f) implies that

for e = i there exist ó>0, 7"_0 and Lôe[L, L+ô] such that for all x{

satisfying \x{—k^^sê (/=2, • • • , n—1), and for all xYe[L, L+ô] and

t>T,

f (t, xl7 x2,       , x„_j) _ 2f it, L¡, k2,       , kn_l).

From (4) it follows that there exists a ro_ 7" sufficiently large that for all

r = r0, x(t) satisfies L<zx(t)<L+ô and

|jcto(0 - 0| < ó       (/= 1,2, •••,«- 2).

Thus we obtain, for i_T0,

0 < if it, L» 0, ■ ■ ■ , 0) </(/, *(/), *'(/), • • • , x<"-2>(,)).

Accordingly, by (6), we have

i  f00 (M — T)"-1
x(i) = ;       ^--f—/(«, U, 0, • • •, 0) d«,

2 Jr    (n — 1)!

which implies (3).

Conversely, suppose that (3) holds for some constants c=¿0 and

k¡ (i'=2, • • ■ , n— 1). Then we can prove there exists a solution

(x0(i), • • • , xn_2it)) to the following system of integral equations:

Xn-2<» = kn-X ~ (s ~ 0/(s, X0(s),    • • , Xn_2(s)) i/s,

/•" (s _ f)2
/7) xn_3it) = kn_2 + 1     —-—/(s, x0(s), • • •, xn_2(s)) ds,

x0(0 = c +-—f(s, x0(s), • • ■ , xn_2(s)) ds.
Jt    (.1 — 1):

Note that we can obtain

0 < c _; x0iN(t) ̂  c + c\M      (M is sufficiently large),

by the same argument as in the even case (cf. [2], [4]).

Then, by using the method of successive approximations (cf. [2], [4]),

we get a solution (x0(t), • • • , xn_2(t)) and it is clear that x0(t) is a desired

nonoscillatory solution of (*) which does not tend monotonically to zero

as /-»-co.
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3. Oscillation theorems.

Theorem 2. Assume that n is even and that condition (1) holds. Let

f(t, x,, x2, • • • , xn_x) be generalized strongly continuous from the left for

Xx>0 and generalized strongly continuous from the right for x1<0 and

suppose there exists a function <p(x) with the following properties:

(a) <j>(x) is a nondecreasing continuous function of x satisfying x<j>(x)~>0

whenever x^O;

(b) there exists c^O and k¡ (i=2, ■ ■ ■ , n— 1), such that

(bl)        iim tof/fr*t'*» ••••*-!> ^ k |/(f> c> fci>
lul-x 0(X,)

/or jowie positive constant k and for all f _; F and

. fc„-i)l

(b2) lim
|x|-00

j\dul<Ku)) < oo.

FAen a necessary and sufficient condition for (*) to be oscillatory is that

(8) j"V-7(i, C, k2, ■■■, kn_x)dt =  CO

for all constants c (VO) and k{ (i=2, ■ • • , n—l).

Proof. Assume that (8) does not hold. Then (3) holds for some

C5^0 and k¡ (i=2, • • • , n—l). Hence by Theorem A, equation (*) has

a bounded nonoscillatory solution, so that condition (8) is necessary.

Conversely, let x(i)>0 be a nonoscillatory solution of (*). In view of

Ryder and Wend's [3] arguments, x(t) must be nondecreasing and hence

must tend to a limit, finite or infinite. Suppose first that the limit is finite,

i.e. lim^o, x(t)=L (>0). Then, we obtain (cf. [1, Theorem 1]) for some

L¡ and / sufficiently large

f un-xf(u, L5, 0, • ■ •, 0) du < »

which contradicts (8).

Next, we turn to the case lim,^,,, x(t)= oo. By again using the argument

of Ryder and Wend [3], we have for sufficiently large t, say t^T,

(9) c'O) = P 7-~-/(«, *(«), Au), ■■■, x{n-2)(u)) du
Jt     (n — 2)1
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if x'(t), ■ • ■ , x{n~x)(t) tend monotonically to zero as /-»-co, or

do) x'(o>r(<"<^t /(».*<«>,^'(«).■ • •.x!n-2,(«))du,
J<     (n — 2)!

where t1<t is sufficiently large, if x'(t) does not tend monotonically to

zero as /-»-co.

In case (9) holds, multiply each side of the inequality in (9) by (^(jt))-1.

Since 6(x) is ncndecreasing in * and x(t) is nondecreasing in t, we obtain

Ä = ^ f" 7Jziir/("'X(M)' X'(M)' • • ' '*(n_2>(M)) d"
^(x(i))      6(x(t)) Jt     (n - 2)!

(11) ^ [•"/(«, x(M), xYtQ, • • • , x"-2)(u)) (ii - Q"-2 du

=Jt 6(x(u)) (n-2)\

Integrating (11) from 7 to /_r,

faKt>JiL>f fV(«. *(«)• *'(«), • ' • » *("~2)(")) (» - *)"~2 Ju j
Jt(D </>(u) -Jt Js #x(w)) (n - 2)!

(12) > f /("-. *(«), x'(k), • • ■, xln~2)(u)) (u - D-1 du

=Jr <¿(x(w)) (»-!)!

By (bl) and the fact that lim^œ x(/)= oo, we may also choose T so large

that, for /_T,

/(f,x(t),xm---,x'"-2,(0).^/c
-777-r-= - l/(i, c, k2, ■ • •, *c„_x)| > 0.

6(x(t)) 2

Substituting the above inequality in (12) and letting /-»-co, we obtain a

contradiction to (b2) if (8) holds.
In case (10) holds, an argument similar to that above again leads to a

contradiction to (b2). This proves the sufficiency part of the theorem.

Theorem 3. In addition to the hypotheses (a) and (b) of Theorem 2,

assume n is odd and that condition (1) holds. Let f(t, x,, • • • , xn_f) be

generalized strongly continuous. Then condition (8) is a necessary and

sufficient condition for the solution of(*) to be oscillatory or tend monotoni-

cally to zero as /-»-co.

Proof.   The necessity follows from Theorem 1.

To prove the sufficiency, suppose x(/)>0 is a nonoscillatory solution

of (*) not tending monotonically to zero as /-»-co.

In this case, we find that x(t) satisfies either (5) or (10) by the argument

used in Ryder and Wend [3]. If x(t) satisfies (5), then our Theorem 3
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follows from Theorem 1, and if x(t) satisfies (10), then it follows as in

the proof of Theorem 2.

Remarks. For equation (2), Theorem 2 and Theorem 3 remain valid

under the more severe condition that / be bounded for all / for each

n-tuple (Xx, x2, • ■ ■ , xn) (cf. [2]). But we note here that the proofs of the

sufficiency parts of Theorems A, 1, 2 and 3 remain valid for the more

general equation (2). Only in the necessity parts does the boundedness of

/in t, —oo</<oo, enter in—in solving the system of integral equations

as in [2]. Our results also extend Theorem 2 of Ryder and Wend [3].

The author wishes to thank the referee for several helpful comments.
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