ON THE RING OF QUOTIENTS OF A GROUP RING1

D. S. PASSMAN

ABSTRACT. In this paper the following extension of a result of Martha Smith is proved. THEOREM. Let K[G] be a group ring which is an order in a ring Q. Then the center of K[G] is an order in the center of Q.

Let K[G] denote the group ring of G over the field K. The main result of this paper is

THEOREM. Let K[G] be a group ring which is an order in a ring Q. Then the center of K[G] is an order in the center of Q.

This was first proved by Martha Smith [2] in a number of special cases and later proved [1] for all semiprime group rings. We follow the notation of [1]. Thus, in particular, $\Delta(G)$ denotes the finite conjugate subgroup of G and $\theta: K[G] \rightarrow K[\Delta(G)]$ is the natural projection.

LEMMA 1. Let $H \subseteq \Delta(G)$ be a finitely generated normal subgroup of G. Then

- (i) $[G: C_G(H)] < \infty$.
- (ii) H has a torsion free central subgroup Z of finite index which is normal in G.
- (iii) The ring of quotients $K[Z]^{-1}K[H]$ is K-isomorphic to $F^{t}[H/Z]$, a twisted group ring of the finite group H/Z over the field $F=K[Z]^{-1}K[Z]$.
- **PROOF.** (i) Let $H = \langle h_1, h_2, \dots, h_n \rangle$. Since $H \subseteq \Delta(G)$ we have $[G: C_G(h_i)] < \infty$. Hence $C_G(H) = \bigcap_{i=1}^n C_G(h_i)$ has finite index in G.
- (ii) By (i) we see that $Z(H)=H\cap C_G(H)$ has finite index in H and certainly Z(H) is normal in G. Since H is finitely generated and $[H:Z(H)]<\infty$, it follows that Z(H) is a finitely generated abelian group. Thus $Z(H)=T\times A$ where T is a finitely generated torsion free abelian group and A is finite of order k. If $Z=\{x^k|x\in Z(H)\}$, then clearly Z is normal in G and Z is a torsion free central subgroup of H of finite index.
- (iii) Now by Lemma 2.4 of [1] no nonzero element of K[Z] is a zero divisor in K[G] since Z is torsion free abelian. Since Z is central in K[H],

Received by the editors August 27, 1971.

AMS 1970 subject classifications. Primary 16A26.

Key words and phrases. Group ring, order.

¹ Research supported by NSF Contract GP 29432.

it is then trivial to form the ring of quotients $E=K[Z]^{-1}K[H]$. This is the set of all formal fractions $\eta^{-1}\alpha$ with $\eta \in K[Z]$, $\eta \neq 0$, $\alpha \in K[H]$ and with the usual identifications made. If $F=K[Z]^{-1}K[Z]$, then F is certainly a central subfield of E so E is an F-algebra. For each $x \in H/Z$ let $\bar{x} \in H$ be a coset representative. Then it is easy to see that $\{\bar{x} \mid x \in H/Z\}$ is an F-basis for the associative algebra E. Moreover for $x, y \in H/Z$ we have

$$\bar{x}\bar{y} = z\overline{xy}$$
 for some $z \in Z$.

Since z is a nonzero element of F we conclude that $E \simeq F^t[H/Z]$.

LEMMA 2. Let α be an element of Z(K[G]), the center of the group ring. Then α is a zero divisor in K[G] if and only if it is a zero divisor in Z(K[G]).

PROOF. If α is a zero divisor in Z(K[G]) then it is certainly a zero divisor in K[G]. Assume now that α is a zero divisor in K[G] and let $\gamma \in K[G]$, $\gamma \neq 0$ with $\alpha \gamma = 0$. Let $H = \langle \operatorname{Supp} \alpha \rangle$. Since α is central, H is a finitely generated subgroup of $\Delta(G)$ which is normal in G. We use that notation and results of Lemma 1. Then $\alpha \in E = K[Z]^{-1}K[H]$ which is a finite dimensional algebra over F and hence α satisfies a polynomial over F. By rationalizing the denominators we can assume that $\alpha^n \beta = 0$ where $\beta = \beta_0 + \beta_1 \alpha + \cdots + \beta_s \alpha^s$ with $\beta_i \in K[Z]$, $\beta_0 \neq 0$.

Now the finite group $G/C_G(H)$ acts on K[H] and let $x_1=1, x_2, \dots, x_r$ be a full set of coset representatives for $C_G(H)$ in G. Set $\tilde{\beta} = \beta^{x_1}\beta^{x_2} \cdots \beta^{x_r}$. Since Z is normal in G and α is central in K[G] we see that all β^{x_i} are polynomials in α with coefficients in K[Z]. Since Z is abelian this then implies that all β^{x_i} commute and hence clearly $\tilde{\beta}$ is central in K[G]. Now

$$\tilde{\beta} = (\beta_0^{x_1} \beta_0^{x_2} \cdots \beta_0^{x_r}) + \delta \alpha$$

for a suitable $\delta \in K[G]$ so we have

$$\tilde{\beta}\gamma = \beta_0^{x_1}\beta_0^{x_2}\cdots\beta_0^{x_r}\gamma.$$

Thus by Lemma 2.4 of [1], $\tilde{\beta}\gamma \neq 0$ since $\beta_0 \neq 0$ implies that $\beta_0^{x_i}$ is not a zero divisor in K[G]. Hence $\tilde{\beta} \neq 0$.

Now $\beta^{x_1} = \beta$ so $\alpha^n \tilde{\beta} = 0$. Since $\alpha^0 \tilde{\beta} = \tilde{\beta} \neq 0$ we can choose $m \geq 0$ maximal with $\alpha^m \tilde{\beta} \neq 0$. Then $\alpha(\alpha^m \tilde{\beta}) = \alpha^{m+1} \tilde{\beta} = 0$. Finally $\alpha^m \tilde{\beta} \in Z(K[G])$ so α is a zero divisor in Z(K[G]) and the result follows.

A ring R is said to be self-injective if R as a right R-module is injective. The following lemma is well known.

LEMMA 3. Let R be a self-injective ring. Then every proper finitely generated left ideal has a proper right annihilator.

PROOF. Let I be the left ideal $I = R\alpha_1 + R\alpha_2 + \cdots + R\alpha_n$ and assume that I has no proper right annihilator. Define

$$\sigma: R \to R \dotplus R \dotplus \cdots \dotplus R \quad (n \text{ times})$$

by

$$\sigma(r) = (\alpha_1 r, \alpha_2 r, \cdots, \alpha_n r)$$

for $r \in R$. This is clearly an R-homomorphism. If $\sigma(r) = 0$ then Ir = 0 so r = 0. This σ is an injection.

Since R is self-injective, there exists a back map τ . Say

$$\tau(0,0,\cdots,1,\cdots,0)=\beta_i\in R$$

where the 1 is in the ith position. Then

$$1 = \tau \sigma(1) = \tau(\alpha_1, \alpha_2, \cdots, \alpha_n) = \beta_1 \alpha_1 + \beta_2 \alpha_2 + \cdots + \beta_n \alpha_n \in I$$

and I=R.

The following is known for ordinary group rings.

LEMMA 4. Let $F^t[W]$ be a twisted group ring of the finite group W over the field F. Then $F^t[W]$ is self-injective.

PROOF. Since $\bar{1}$ is a scalar multiple of $1 \in F^t[W]$ we may assume without loss of generality that $\bar{1} = 1$. Let $\tau: F^t[W] \to F$ be the trace map. That is, if $\alpha = \sum a_x \bar{x}$ then $\tau(\alpha) = a_1$. Since $a_x = \tau(\alpha \bar{x}^{-1})$, we have $\alpha = \sum_{x \in W} \tau(\alpha \bar{x}^{-1})\bar{x}$.

Let $U \subseteq V$ be $F^t[W]$ -modules and let $\sigma: U \to F^t[W]$ be a given $F^t[W]$ -homomorphism. Then $\tau \sigma: U \to F$ and since F is a field we can extend $\tau \sigma$ to a map $\varphi: V \to F$ which is F-linear.

We now define $\tilde{\varphi}: V \rightarrow F^t[W]$ by

$$\tilde{\varphi}(v) = \sum_{v \in W} \varphi(v\bar{x}^{-1})\bar{x}.$$

Then certainly $\tilde{\varphi}$ is an F-linear map. Suppose $x, g \in W$. Then

$$\bar{x}\bar{g} = a\bar{x}\bar{g}$$
 for some $a \in F$, $a \neq 0$

so we have

$$\bar{g}^{-1}\bar{x}^{-1} = (\bar{x}\bar{g})^{-1} = (a\overline{x}\bar{g})^{-1} = \overline{x}\bar{g}^{-1}a^{-1}$$

and since φ is F-linear

$$\varphi(v\bar{g}^{-1}\bar{x}^{-1})\bar{x}\bar{g} \,=\, \varphi(v\overline{x}\overline{g}^{-1}a^{-1})a\overline{x}\overline{g} \,=\, \varphi(v\overline{x}\overline{g}^{-1})\overline{x}\overline{g}.$$

Now let $g \in W$. Then by the above

$$\tilde{\varphi}(v\bar{g}^{-1}) = \left(\sum_{x \in W} \varphi(v\bar{g}^{-1}\bar{x}^{-1})\bar{x}\bar{g}\right)\bar{g}^{-1} = \left(\sum_{x \in W} \varphi(v\overline{x}\bar{g}^{-1})\overline{x}\bar{g}\right)\bar{g}^{-1} = \ \tilde{\varphi}(v)\bar{g}^{-1}.$$

Thus $\tilde{\varphi}$ is an $F^t[W]$ -homomorphism.

Finally for $u \in U$,

$$\begin{split} \tilde{\varphi}(u) &= \sum_{x \in W} \varphi(u\bar{x}^{-1})\bar{x} = \sum_{x \in W} \tau(\sigma(u\bar{x}^{-1}))\bar{x} \\ &= \sum_{x \in W} \tau(\sigma(u)\bar{x}^{-1})\bar{x} = \sigma(u) \end{split}$$

since σ is an $F^t[W]$ -homomorphism. Thus $\tilde{\varphi}$ extends σ and $F^t[W]$ is injective.

LEMMA 5. Let $\alpha \in K[G]$. If α is not a left divisor of zero, then there exists $\gamma \in K[G]$ such that $\theta(\gamma \alpha)$ is central and is not a zero divisor in K[G].

PROOF. Write $\alpha = \sum_{i=1}^{n} x_i \alpha_i$ with $\alpha_i \in K[\Delta]$ and with the x_i in distinct cosets of Δ . Let H be the subgroup of G generated by the elements in the support of all α_i and their finitely many conjugates. Then H is a finitely generated normal subgroup of G and $H \subseteq \Delta(G)$. We use the results and notation of Lemma 1.

Now $\alpha_i \in K[H] \subseteq E = K[Z]^{-1}K[H]$ so we can define $I = E\alpha_1 + E\alpha_2 + \cdots + E\alpha_n$ to be a finitely generated left ideal of E. Observe that $E \simeq F^t[H/Z]$; so by Lemma 4, E is self-injective. Thus by Lemma 3 either I = E or I has a proper right annihilator.

Suppose I has a proper right annihilator element, say $\eta^{-1}\mathscr{E}\in E$ with $\eta\in K[Z],\ \eta\neq 0,\ \mathscr{E}\in K[H],\ \mathscr{E}\neq 0$. Then clearly $I\mathscr{E}=0$ so $\alpha_i\mathscr{E}=0$ for all i and hence $\alpha\mathscr{E}=0$. Since α is not a left divisor of zero this is a contradiction and we conclude that I=E.

Now I=E so $1\in I$. If we write 1 as a sum of left E multiples of the α_i and then rationalize the denominators we see that there exists $\beta \in K[Z]$, $\beta \neq 0$, with $\beta \in K[H]\alpha_1 + K[H]\alpha_2 + \cdots + K[H]\alpha_n$. Now the finite group $G/C_G(H)$ acts on K[Z] and let $y_1, y_2, \cdots, y_s=1$ be a full set of coset representatives for $C_G(H)$ in G. Set $\tilde{\beta} = \beta^{y_1}\beta^{y_2} \cdot \cdots \cdot \beta^{y_s}$. By Lemma 2.4 of [1] we see that $\tilde{\beta} \neq 0$ and in fact $\tilde{\beta}$ is not a zero divisor in K[G]. Moreover since Z is abelian, all β^{y_i} commute and hence $\tilde{\beta}$ is clearly central in K[G].

Since $y_s = 1$, $\tilde{\beta} \in \sum K[H]\alpha_i$ so we can write $\tilde{\beta} = \sum_{1}^{n} \gamma_i \alpha_i$ with $\gamma_i \in K[H]$. Set $\gamma = \sum_{1}^{n} \gamma_i x_i^{-1}$. Then $\gamma \alpha = \sum_{i,j} \gamma_i x_i^{-1} x_j \alpha_j$. If $i \neq j$, then clearly Supp $(\gamma_i x_i^{-1} x_j \alpha_j)$ is disjoint from $\Delta(G)$. Thus $\theta(\gamma \alpha) = \sum_{1}^{n} \gamma_i \alpha_i = \tilde{\beta}$ and the lemma is proved.

PROOF OF THE THEOREM. Clearly $Z(Q) \supseteq Z(K[G])$. Let $\alpha \in Z(K[G])$ be an element which is not a zero divisor in Z(K[G]). Then by Lemma 2, α is not a zero divisor in K[G] so α is invertible in Q. Clearly $\alpha^{-1} \in Z(Q)$.

Now let $\rho \in Z(Q)$. Then $\rho = \alpha^{-1}\beta$ where α , $\beta \in K[G]$ and α is not a zero divisor in K[G]. Thus for all $\omega \in Q$ we have $\omega \alpha^{-1}\beta = \alpha^{-1}\beta\omega$ so $\alpha \omega \alpha^{-1}\beta = \beta\omega$. Set $\omega = x\alpha$. Then for all $x \in G$, $\alpha x\beta = \beta x\alpha$. Now by Lemma 5 there exists $\gamma \in K[G]$ such that $\theta(\gamma \alpha) \in Z(K[G])$ is not a zero divisor in K[G]. Multiplying

the above equation on the left by γ then yields $(\gamma \alpha)x\beta = (\gamma \beta)x\alpha$ for all $x \in G$ and by Lemma 1.3 of [1] we have $\theta(\gamma \alpha)\beta = \theta(\gamma \beta)\alpha$.

Set $\mathscr{E} = \theta(\gamma \alpha)$, $\eta = \theta(\gamma \beta)$. Since $\mathscr{E} \in Z(K[G])$ is not a zero divisor in K[G] we have $\mathscr{E}^{-1}\eta \in Q$ and since $\alpha^{-1}\beta \in Z(Q)$ we obtain, from $\mathscr{E}\beta = \eta \alpha$,

$$\mathscr{E}^{-1}\eta = \beta\alpha^{-1} = \alpha(\alpha^{-1}\beta)\alpha^{-1} = \alpha^{-1}\beta = \rho.$$

Finally \mathscr{E} , $\rho \in Z(Q)$ so $\eta = \mathscr{E} \rho \in Z(Q) \cap K[G] = Z(K[G])$ and $\rho = \mathscr{E}^{-1} \eta$ is a quotient of elements in Z(K[G]). The result follows.

REFERENCES

- 1. D. S. Passman, Infinite group rings, Marcel Dekker, New York, 1971.
- 2. M. Smith, Group algebras, J. Algebra 18 (1971), 477-499.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706