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MAINTENANCE OF OSCILLATIONS UNDER
THE EFFECT OF A PERIODIC FORCING TERM

ATHANASSIOS G.   KARTSATOS

Abstract.   A necessary and sufficient condition is given for the

oscillation of all solutions of the differential equation

x("> + Pit, x,x',--, x«-1') = Q(t)

where x¡P(t, x„ x2, ■ ■ ■ , x„)>0 for every x^O, and Q is a con-

tinuous periodic function. This result answers a question recently

raised by J. S. W. Wong. It is also shown that a well-known

sufficient condition for the existence of at least one nonoscillatory

solution of the unperturbed equation guarantees, for a large class of

equations, the nonexistence of bounded oscillatory solutions.

Introduction. It is of great importance in physics, and particularly in

the study of mechanical systems, to know whether we can maintain the

oscillation of all solutions of

(*) x<n) + P(t, x, x', ■ ■ • , x«"-») = 0

by adding a periodic forcing term (cf. Wong [5, p. 230], for a question

raised there).

In [3] we gave some results concerning the oscillation of solutions to

equations of the form

(**) *<"> + P(t, x,x',---, *<«-») = Q(t)

where the function Q was small in some sense. Here we consider the same

problem for a class of functions Q which contains "many" continuous

periodic functions.

The functions P, Q will be supposed to be continuous and smooth

enough to allow the existence of solutions of (**) for all large t. We

consider only such solutions in this paper and denote their family by S.

A solution xeê is said to be bounded if \x(t)\^k for every t in its domain

[Tx, +co) (Tx^.t0, where f0 is a fixed nonnegative number) and some

ac>0. A solution xeê is said to be oscillatory if it has an unbounded set
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of zeros on [Tx, + co). The function Q will be supposed to have the follow-

ing property: there exist two sequences {tn}, {t*}, such that lim^^ tn=

Umn^tt= + co, R(tn)=Xi, R(tt)=-X2, and -X2^R(t)^Xi for all

te[t0, +00), where ReC[t0, + 00), R^(t)=Q(t) for every te[t0, +00), and

Xv x2>o.

1. Our main result is contained in the following

Theorem 1. Suppose that P(t, xlt x2, • • • , xn)=P0(t)G(xx, x2, ■ ■ ■ , xn)

where

(i) P0: [t0, + co)—»-(0, + 00), continuous and such that for any continuous

S: [t0, +oo)->-(0, +00) with S(t)^P0(t), te[t0, +00), the equation

(1) Ww + S(t)G(W, W + R', • • • , ft""-1' + i?"1-1») = 0

has all of its bounded solutions (resp. all of its solutions) (a) for n=odd,

oscillatory or tending monotonically to zero, (h)for n = even, oscillatory;

(ii) G:Rn->-R=( — 00, +00), continuous, increasing w.r.t. Jtj and

XxG(xx, x2,---, xn)>0for every x^O.

Then, all bounded solutions (resp. all solutions) xeS are (a) for n = odd,

oscillatory or such that limi_^t.Q0[x(/)—R(t)]=— Ax or X2, (h) for n=even,

oscillatory.

Proof. Suppose first that «=even and that (1) has all of its bounded

solutions oscillatory. Assume the existence of a bounded nonoscillatory

solution xeS and let 0<.\:(r)^£<-r-ao for all t^ti, where ti^t0. Then

the function W(t)=x(t)—R(t) is a bounded solution of

(2) Ww + P0(t)G(W(t) + R(t), ■■■ , W^-»(t) + R<n~l)(t)) = 0

with the property W(t)+R(t)>0 on [r1; +00). For this W(t) we obtain

W{n)(t)<0, i.e., as in Theorem 1 of [1], (-l)mWm(t)<0 for every m=

1, 2, • • • , n and every te[tu +00). Since W(t)+R(t)>0, W'(t)>0 and

R(t*)=-X2, there exists «0 such that i*0^/i and W(t)+R(t)^ W(tt)—

R(t:o)=W(t:o)-X2>0, te[t:o, + 00). Thus,

G(W + R, W' + R',"-, UK'"-1' + A1"-1»)

§; G(W - Xt, • • • , l^1"-1» + Rin~l)) > 0   for t e [t*o, + 00).

Now put V(t)= W(t)—X2, te[t*o, +00); then (1) becomes

(3) V^(t) + S(t)G(V(t), V'(t) + R'(t), ■ ■ • , F«-»« + Rtn-»(t)) = 0

where

u      c7(ir - x2, ■ ■ ■, m*-» + ä«"-1»)   = ° ;'
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Since V(t) has to be oscillatory by assumption, we obtain a contradiction

to W(t)—/2>0. Consequently, x(t) cannot be eventually positive. An

analogous proof holds if we assume that x(t) is negative for all large t,

and the proof for bounded solutions is complete.

Now, suppose that x(t) is a nonoscillatory and unbounded solution of

(**). Assume that x(t)>0 for l^.tx. Then the function W(t)=Bx(t)—R(i)

satisfies equation (2) and, according to Theorem 2 of [1], we must have

W'(t)>0 for all large t and lim,^« W(t)= + œ. Thus, W(t)+R(t)^

Wit)—X2>0 eventually, and we arrive again at equation (3) which

(provided of course that hypothesis (i), (b) is satisfied) implies a con-

tradiction to the positivity of the function W(t)—X2. Consequently, xit)

cannot be eventually positive. An analogous situation appears in the case

x(t)=negative for all large t, and this completes the proof in the case

«=even.

Assume now that n=odd, x(t) is a solution of (*) such that 0<x(t)^k,

te[t}, + co) and hypothesis (i), (a) is satisfied for the bounded solutions of

(1). Let fV(t)mx(t)+R(t), te[tu +oo). Then W(t) is a bounded solution

of (2) such that W(t)+R(t)>0 and W(t)<0 for every te[tu +»)

(formulas analogous to those of Cases I, II in Theorem 2 of [1] also hold

in the case n=odd). Suppose that W(t) — X2<0 for seme t>íj. Then,

W(t)—X2<0 for all t>r, which implies a contradiction to W(t)+R(t)>Q.

Thus, W(t)-X2>0 for all t> tl and it follows from (3) that lim,^œ W(t)~

X2—Q, or litn^^K, x(t)—R(t)=)>2. As in the case «=even, it can be shown

that there are no positive solutions of (**) which are unbounded for all

large t, and this completes the proof of the case «=odd.

Corollary. If hypothesis (ii) of Theorem 1 is satisfied, and P0 is

positive and continuous with J? í"~1P0(í)ci?= + oo, then, for n—even,

every bounded solution of(**) is oscillatory, and, for n=odd, every bounded

solution of (**) is oscillatory, or such that linii^a.^ [x(t)—R(t)]= — Xx or Xt.

2. Let x(t) be a solution of (**) (Q(t)~0) such that \x(t)\^k, te

[Tx, + oo) and

(4) fV1 |P(r, x(t), x'(t), • • •, xin-l)(t))\ dt<+œ.
Jt,

Then we have

x(n-l,(i) = X(n-D(r¡c) _ f ' P(Sj ¿(s)) ds (m = W0) xVl. . . > X<»-»(f)))
¿Tx

which, by use of (4), yields

(5) lim x(—"(f) = xin-v(Tx) - j   P(f, x(t)) dt.
t-+m JTx
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Now, lim(_+00 .v("-1)(f)=0, otherwise we would have limi—+00 x(t)=

±00, a contradiction to the boundedness of x(t). Thus, from (5) we

obtain

(6) xin-v(Tx) = ("p\t, x(t)) dt.
*t Tx

It is obvious that we can replace (Tx) in (6) by any t^.Tx, in which case

it becomes

(7) x("-"(f) =j'°P(s, xis)) dt,       t £ Tx.

A new integration from Tx to t^Tx gives

x{n~2)(t) = xin'2)(Tx) +j   ( \P(u, x(u)) du\ ds

(8) ¡-ao fan

= x<"-2>(Tx) +      (s - T,)P(s, *(s)) ds-\   (s- t)P(s, x(s)) ds.

Taking the limit of (8) as t-*-+ oo and then replacing Tx by r^ Tx, we finally

obtain

(9) x{n~2)(t) =j\t - s)P(s, x(s)) ds.

Repeating the same process we obtain the formulas

/•oo    It _    \n-m-l

(10) x(m)(t) =-'- P(s, x(s)) ds,       m m 1, 2, • • • , n - 1,
Jt  (n — m — 1)!

and

(ID

x(t) = x(Tx) -      \"     S       P(s, x(s)) ds
JTx   (n — 1)!

f " (t - s)"*1
+-'—P(s, x(s)) ds.

Jt    (n — 1)!

If x(t) is bounded and oscillatory, then we have to have lmv^.^ x(t)=0.

Thus, from ( 11 ) we get

f » ft _ s\«-l
(12) x(t) =      s-— P(s, x(s)) ds.

Jt    (n - 1)!
We have the following

Lemma.   If x(t) is a solution of (**) (Q(t)=0) such tnat \x(t)\^k,

te[Tx, +oo)and

ÍV1 \P(t, x(t))\ dt < +00,
J Tx

then x(t) satisfies the equation (11), which reduces to (12) ifx(t) is oscillatory.
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It has been repeatedly shown (see Wong [5] and the references cited

there) that if j"£ i"-1 \P0(t)\ dt< + co, the equation (**) with Q(t)=0 and

P=PtíG has at least one bounded nonoscillatory solution which converges

to a nonzero limit as f-*-+co. We show here that, under quite general

conditions, equation (**) with Q(t)=0 has no bounded oscillatory solu-

tions. Before we give the main theorem of this section, we note that the

integral condition on P0 in the corollary is also necessary. In fact, as

above, the problem reduces to finding a solution to the integral equation

x(t) = k + \ * (t~ S)"*P„(s)G(W(s) + R(s), • • •, Wl*-V(s) + R{n-V(s))ds,
Jt    (n — 1)!

where A: is a nonzero constant.

Theorem 2.    Let Q(t)=0 in (**) and

(i) P:[t0, + oo) xRn^R, continuous, and such that

\p(t,u(t),u'(t),■■■,«t"-1,(í))| éPx.Át)MOI,

\Xtn-1P,Jt)dt
Jtt,

< +00,

for every bounded ueC[t0, +co), where Pi,„:[/0, +co)-»-.R+=[0, + oc)

and continuous.

Then, every bounded oscillatory xe6° has to be identically zero for all

large t.

Proof.   Suppose that xeé> is bounded and oscillatory. Then it follows

from the Lemma that lim¡^+00 x(f)=0 and

(13) x(i)=     \-~ P(s, x\s)) ds.
Jt    (n — 1)!

Now, there exists tf5iTx such that k(/i)l«supte[<1#+00, \x(t)\, and

(i4) ro-h + ir-'PxjodKi.
Jtt

Combining (13) and (14) we obtain

MOI £jl(< - »r4**. *(s))l ds <!"(, - h + ir-'Pxjt) MOI dt

and

\x(tx)\ ^ W'i)i ¡"o -tx + ir-^ut) dt,
jti

a contradiction to (14), unless sup(e[(i +00) |x(/)|=0.
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A corollary to Theorem 2, which covers large classes of interesting

equations, is the following

Corollary. There are no nontrivial bounded oscillatory solutions to the

equation

x(») + (1^n+£)x2p+l m q

where m^I, p=a nonnegative integer, £>0.

In fact, here we have P. x(t)»kt9(lltn+t) for any xeC[l, +00),

\x(t)\<k.
Discussion. It is worth noticing that the problem of the oscillation

of (**) is being reduced here to that concerning the oscillation of an

equation of the type (*) without forcing term. However, there still remains

an open question: What functions do ensure the oscillation of (**)

without necessarily requiring that all solutions of the unperturbed equa-

tion be oscillatory?

Theorem 1 can be extended to equations with more general functions

P, e.g., the ones considered in Chapter 1 of [2] which contain as very

special cases some of those considered by Ryder and Wend in [4].

Another open problem here is the following: what happens if P does not

satisfy xxP(t, xx, • • ■ , .vn)>0? In the case

P~(t, x(t)) = — min{P(t, x(t)), 0} = small enough,

e.g., Jf" tn~lP-(t, x(t))dt< +00, the author thinks that the following

procedure might prove to be useful: We first reduce the problem to that

of an unperturbed equation and then we consider the perturbed equation

w<n) + p+(tt w+R,--, W^-v + A«"-1»)

= P~(t, W + R, • • •, H""-1» + iv«""1»)

(P+(t, x(t)) = max{P(t, x(t)), 0})

which can be treated as in [3].

Example.    Consider the equation:

(***) xln) + (l¡tn)xiv+l = sin(2í + 1)

where «=even, p=a positive integer. Here we have

P0(t) m 1/r",       G(xi, x2, • • •, xn) m x\>+1,

R(t) m 2~n sin(2/ + 1).
Since

t^Sit) dt = + oc for any function S(t) ^ P0(t)

it follows from Theorem 2 in [1] that for such functions S all solutions of
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x"t)+S(t)xtp+1—0 are oscillatory, and our Theorem 1 implies the oscilla-

tion of all solutions of (***).

The author wishes to thank the referee for his helpful suggestions.

Note added in proof. Professor H. Teufel [Forced second order non-

linear oscillation, J. Math. Anal. Appl. (to appear)] has obtained some

results under conditions independent of the ones considered in this paper.
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