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NUMERICAL RANGE FOR CERTAIN
CLASSES OF OPERATORS

RICHARD BOULDIN

ABSTRACT. We prove a basic result which relates the structure
of the spectrum to the interior of the numerical range. Using this
result we derive corollaries concerning compact operators, quasi-
nilpotents, and finite dimensional operators. In particular, we
characterize finite dimensional convexoid operators.

1. Introduction. In this paper “operator” will mean a bounded linear
transformation of the complex Hilbert space H into itself. The thrust of
the conclusions that we obtain here is to show that the numerical range of
an operator T can be described provided that T—z/ has closed range.
For a general discussion of numerical range see Chapter 17 of [4].

2. Preliminaries. For an isolated eigenvalue z there are two different
notions of eigenspace ; the geometric eigenspace is just the kernel of T—zI
(which we simply write as T—z). The algebraic eigenspace associated with
z is the range of an idempotent P defined by a contour integral accordingto
the Banach space operational calculus (see pp. 178-181 of [5], for example).
If the underlying Hilbert space is H then both PH and (I—P)H are in-
variant under 7, and the restriction of T—z to PH (which we denote
T—z/PH) is quasi-nilpotent. We shall say that an eigenvalue is a normal
eigenvalue if the corresponding geometric eigenspace reduces T; if a
normal eigenvalue is an isolated eigenvalue and the geometric multi-
plicity agrees with the algebraic multiplicity then we say that it is a
normal-isolated eigenvalue. Clearly an isolated eigenvalue for a normal
operator is a normal-isolated eigenvalue.

It will be convenient to denote by W(T) the numerical range of 7, i.e.
{Tf, f):1 fll=1}, and the closure of the numerical range is denoted by
W(T)~. Finally, an operator is convexoid provided that W(T)~ is the
convex hull of the spectrum of T, denoted conv o(T). Note that it follows
from Theorem 1.24 on p. 16 of [8] that every point of conv o(T) can be
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written as a convex linear combination of some four points of (7). From
this and the fact that the continuous image of a compact set is compact,
it follows that conv ¢(7T) is compact. Thus conv o(7) is closed.

3. Main results.

LemMA 1. If z is an eigenvalue of T and if z belongs to the topological
boundary of W(T), denoted Bdry W(T), then ker(T—z)=ker(T*—z).

Proor. By choosing an appropriate 6 and replacing T with e*(T—2)
we may assume that z=0 and Re T=0. Then for feker T we have

0 = Re(Tf, /) = (Re T)f, f) = (Re T)/’f|*
and so (Re T)f=0. It follows that feker T*.

THEOREM 1. For any z in the spectrum of T, i.e. zeo(T), one of the
following holds: (1) z belongs to the interior of the numerical range, i.e.
zelnt W(T), (2) z is a normal-isolated eigenvalue, (3) the range of T—z is
not closed.

PrOOF. Suppose that z=0 and assume that both (1) and (3) above fail.
Since T is not invertible either ker T5#{0} or ker T*{0}. In either case
zero belongs to Bdry W(T) and the lemma implies that ker T=ker T*3
{0}. Thus ker T reduces T and we note that (ker 7)1 =(ker T*)' =TH.
Thus T=06T, on ker T®TH and since T; is one-to-one and onto, it is
invertible. It follows that T—z is invertible for all nonzero z with |z|
sufficiently small. Hence zero is a normal-isolated eigenvalue for T.

REMARK 1. The above theorem can also be deduced from Theorem 1
of Crabb in [3] using the theory of ascent and descent. For an account of
the different definitions of numerical range in a Banach space see [1].

COROLLARY 1. If T is compact and if z70 belongs to o(T)NBdry W(T)
then z is a normal-isolated eigenvalue.

Proor. If T is compact and z#0 then T—z has closed range.
For a discussion relevant to the next corollary see Problem 170 of [14].

COROLLARY 2. If N is a nonzero quasi-nilpotent operator such that NH
is closed then 0 € Int W(N).

Proor. Since 0 € ¢(N), we can apply Theorem 1 and conclude that
either (1) or (2) holds. Since a(N)={0}, it is clear that the algebraic eigen-
space associated with zero is the whole Hilbert space. So if (2) holds then
N is the zero operator.

Consult Lemma 5 of [2] for a list of conditions sufficient for an operator
to be convexoid.
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THEOREM 2. If T is convexoid and z is an extreme point of W(T)~ then
either z is a normal-isolated eigenvalue or else (T—z)H is not closed.

PROOF. It is clear that the extreme points of W(T)~ are contained in
Bdry W(T) and so this follows from Theorem 1.

In [6] Moyls and Marcus obtain conditions which are necessary and
sufficient for an operator on a finite dimensional Hilbert space to be con-
vexoid. The next result is somewhat simpler than their theorem.

COROLLARY 3.  An operator T on a finite dimensional Hilbert space H is
convexoid if and only if every extreme point of W(T) is a normal-isolated
eigenvalue.

Proor. Half of the corollary is immediate from Theorem 2. We
assume that every extreme point of W(T) is a normal-isolated eigenvalue
and we denote this set of extreme points by E(T). By the Hausdorff-
Toeplitz theorem we know that W(T) is a compact convex set and by the
Krein-Milman theorem we know thatconv E(T)= W(T).Since E(T)< o(T),
we have W(T)<conv o(T). It is well known that W(T)~> o(T) and since
W(T) is closed and convex, we have W(T)>conv o(T). Thus the corollary
is proved.

The next corollary was also noted by Moyls and Marcus.

COROLLARY 4. If T is a convexoid operator on H and the dimension of
H is not greater than four then T is normal.

Proor. By Corollary 3, W(T) has at most four extreme points. If W(T)
has four extreme points then T is clearly normal. If W(T) has three extreme
points then 7 has a three dimensional reducing subspace such that T
restricted to it is normal. Hence T is the direct sum of a normal operator
and an operator on a one dimensional subspace and therefore it is
normal. If W(T) does not have more than two extreme points then either
W(T) is a line segment or it is one point. In the former case T is a linear
function of a selfadjoint operator and in the latter case T'is a scalar multiple
of the identity. Hence T is normal.

REMARK 2. We give an example due to J. P. Williams which shows that
the above corollary cannot be extended to the case where dim H is five.
If the invertible convexoid operator T is normal then 7! is normal and it
follows that T is convexoid. The operator that we construct is invertible
and convexoid but its inverse is not convexoid. Let T, be the matrix op-
erator (J §) and recall that the numerical range of Ty is the closed disc
centered at zero with radius 4. Thus the numerical range of T,=I+Tj is
the closed disc centered at 1 with a radius of §. Let {z,, z3, z,} be points so
placed that they are the vertices of an equilateral triangle which circum-
scribes the above disc. If T,=z,I for k=2, 3,4 and if T=T,0T, 6T ;0T,
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then T is invertible and convexoid but 7! is not convexoid. (The inverse
of T, is I-T,.)
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