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NUMERICAL RANGE FOR  CERTAIN

CLASSES  OF  OPERATORS

RICHARD  BOULDIN

Abstract. We prove a basic result which relates the structure

of the spectrum to the interior of the numerical range. Using this

result we derive corollaries concerning compact operators, quasi-

nilpotents, and finite dimensional operators. In particular, we

characterize finite dimensional convexoid operators.

1. Introduction. In this paper "operator" will mean a bounded linear

transformation of the complex Hilbert space 77 into itself. The thrust of

the conclusions that we obtain here is to show that the numerical range of

an operator T can be described provided that T—zI has closed range.

For a general discussion of numerical range see Chapter 17 of [4].

2. Preliminaries. For an isolated eigenvalue z there are two different

notions of eigenspace ; the geometric eigenspace is just the kernel of T—zI

(which we simply write as T—z). The algebraic eigenspace associated with

z is the range of an idempotent P defined by a contour integral according to

the Banach space operational calculus (see pp. 178-181 of [5], for example).

If the underlying Hilbert space is H then both F77 and (I—P)H are in-

variant under F, and the restriction of T—z to F77 (which we denote

T—zjPH) is quasi-nilpotent. We shall say that an eigenvalue is a normal

eigenvalue if the corresponding geometric eigenspace reduces F; if a

normal eigenvalue is an isolated eigenvalue and the geometric multi-

plicity agrees with the algebraic multiplicity then we say that it is a

normal-isolated eigenvalue. Clearly an isolated eigenvalue for a normal

operator is a normal-isolated eigenvalue.

It will be convenient to denote by W(T) the numerical range of F, i.e.

{(Tfif): ||/|| = 1}, and the closure of the numerical range is denoted by

W(T)~. Finally, an operator is convexoid provided that W(T)~ is the

convex hull of the spectrum of T, denoted conv a(T). Note that it follows

from Theorem 1.24 on p. 16 of [8] that every point of conv a(T) can be
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written as a convex linear combination of some four points of a(T). From

this and the fact that the continuous image of a compact set is compact,

it follows that conv a(T) is compact. Thus conv o(T) is closed.

3. Main results.

Lemma 1. If z is an eigenvalue of T and if z belongs to the topological

boundary of W(T), denoted Bdry W(T), then ker(F— z)=ker(F*— z).

Proof. By choosing an appropriate 6 and replacing F with eie(T—z)

we may assume that z=0 and Re F^O. Then for/Gker F we have

0 = Re(F//> = <(Re F)/,/> = ||(Re F)1'2/!2

and so (Re F)/=0. It follows that/cker T*.

Theorem 1. For any z in the spectrum of T, i.e. zeo(T), one of the

following holds: (1) z belongs to the interior of the numerical range, i.e.

zelnt W(T), (2) z is a normal-isolated eigenvalue, (3) the range of T—z is

not closed.

Proof. Suppose that z=0 and assume that both (1) and (3) above fail.

Since Fis not invertible either ker T¿¿{0} or ker F*t¿{0}. In either case

zero belongs to Bdry W(T) and the lemma implies that ker F=ker T*¿¿

{0}. Thus ker F reduces F and we note that (ker F)1 = (ker T*)L = TH.

Thus T=0®Tx on ker T®TH and since Tx is one-to-one and onto, it is

invertible. It follows that T—z is invertible for all nonzero z with |z|

sufficiently small. Hence zero is a normal-isolated eigenvalue for T.

Remark 1. The above theorem can also be deduced from Theorem 1

of Crabb in [3] using the theory of ascent and descent. For an account of

the different definitions of numerical range in a Banach space see [1].

Corollary 1. IfTis compact andifz^O belongs to a(T)C\Bdry W(T)

then z is a normal-isolated eigenvalue.

Proof.    If Fis compact and z^O then T—z has closed range.

For a discussion relevant to the next corollary see Problem 170 of [14].

Corollary 2. If N is a nonzero quasi-nilpotent operator such that NH

is closed then 0 e Int W(N).

Proof. Since 0 g a(N), we can apply Theorem 1 and conclude that

either (1) or (2) holds. Since a(N)={0}, it is clear that the algebraic eigen-

space associated with zero is the whole Hilbert space. So if (2) holds then

N is the zero operator.

Consult Lemma 5 of [2] for a list of conditions sufficient for an operator

to be convexoid.
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Theorem 2. If T is convexoid and z is an extreme point of W(T)~ then

either z is a normal-isolated eigenvalue or else (T—z)H is not closed.

Proof. It is clear that the extreme points of W(T)~ are contained in

Bdry W(T) and so this follows from Theorem 1.

In [6] Moyls and Marcus obtain conditions which are necessary and

sufficient for an operator on a finite dimensional Hilbert space to be con-

vexoid. The next result is somewhat simpler than their theorem.

Corollary 3. An operator T on a finite dimensional Hilbert space 77 is

convexoid if and only if every extreme point of W(T) is a normal-isolated

eigenvalue.

Proof. Half of the corollary is immediate from Theorem 2. We

assume that every extreme point of W(T) is a normal-isolated eigenvalue

and we denote this set of extreme points by E(T). By the Hausdorff-

Toeplitz theorem we know that W(T) is a compact convex set and by the

Krein-Milman theorem we knowthatconv£(F)= W(T). Since E(T)^a(T),

we have vV(T)<=com o(T). It is well known that W(T)~=>a(T) and since

W(T)is closed and convex, we have IF(F)=>conv a(T). Thus the corollary

is proved.

The next corollary was also noted by Moyls and Marcus.

Corollary 4. 7/ F is a convexoid operator on 77 and the dimension of

77 is not greater than four then T is normal.

Proof. By Corollary 3, W(T) has at most four extreme points. If W(T)

has four extreme points then Fis clearly normal. If W(T) has three extreme

points then F has a three dimensional reducing subspace such that T

restricted to it is normal. Hence Fis the direct sum of a normal operator

and an operator on a one dimensional subspace and therefore it is

normal. If W(T) does not have more than two extreme points then either

W(T) is a line segment or it is one point. In the former case F is a linear

function of a selfadjoint operator and in the latter case Fis a scalar multiple

of the identity. Hence F is normal.

Remark 2. We give an example due to J. P. Williams which shows that

the above corollary cannot be extended to the case where dim 77 is five.

If the invertible convexoid operator Fis normal then F_1 is normal and it

follows that F^1 is convexoid. The operator that we construct is invertible

and convexoid but its inverse is not convexoid. Let F0 be the matrix op-

erator (o I) and recall that the numerical range of F0 is the closed disc

centered at zero with radius \. Thus the numerical range of F1=7+F0 is

the closed disc centered at 1 with a radius of \. Let {z2, z3, z4} be points so

placed that they are the vertices of an equilateral triangle which circum-

scribes the above disc. If Tk=zkI for k=2, 3, 4 and if T=Tx®T2®Ti®Ti



206 RICHARD bouldin

then F is invertible and convexoid but T1 is not convexoid. (The inverse

of Txisl-T0.)

Acknowledgement. I am grateful to the referee for simplifying and

strengthening the proof of Theorem 1.
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