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ON NONOSCILLATORY SOLUTIONS OF A NONLINEAR
DIFFERENTIAL EQUATION

R.   GRIMMER

Abstract. Sufficient conditions are given which insure that all

nonoscillatory solutions of (p(t)x')'+h(x)x'+q(t)g(x)=f(t) tend to

zero as t tends to infinity.

In this paper we examine the behavior of the nonoscillatory solutions of

the equation

(1) (p(t)x')' + h(x)x' + q(t)g(x) = /(/)

wherep, q, and/are real valued and continuous for /^0 and h and g are

real valued and continuous for all real x. Also, we assume p(t) and q(t)

are positive for all /, xg(x)>0 for x^O, and xH(x)^.0 where H(x) is

defined by

H(x) =     h(u) du.
Jo

In a recent paper [1], Hammett considered the equation

(2) (p(t)x')' + q(t)g(x) = /(/)

with/), q, g, and /as above and gave conditions which insure that every

nonoscillatory solution x(/) of (2) tends to zero as /—»-co. The purpose

of this paper is to prove a similar result for (1) which when applied to (2)

extends Hammett's result.

As an example of the possible nonoscillatory behavior of solutions of

(2) we note that (2+sin /)// is a nonoscillatory solution of an equation of

the form

(3) (/*')' + x3 = /(/)

with f(t)=fx(t)—(cost)It—sin t where J00 \fx(t)\ dt<oo. Our main result

will show that all nonoscillatory solutions of (3) tend to zero as /—»co while

Hammett's result does not apply as he requires j"00 |/(/)| dt<<x>.
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Theorem 1.    Suppose the following conditions are valid:

(i) p(t)>k>0, k constant,

(ii)P(l/jp(0)*-oo,
(iii) |g(x)| is bounded away from zero if\x\ is bounded away from zero.

(iv) if {tn} and {sn} are sequences with 0<tn<s„<tn+x and sn—tn>s

where e is a positive constant, then

»    fs"
2      «(0 dt = oo,

(v) F(t)= Jo /(") du is bounded.
Then ifx(t) is a nonoscillatory solution of (I), x(t)—>0 as i—>-oo.

Proof.   Let x(t) be a nonoscillatory solution of (1) and consider the

equation

(4) x' = (y - H(x) + F(t))lp(t),       y = -q(t)g(x),

which is equivalent to (1). Corresponding to x(t) we consider the solution

(x(t),y(t)) of (4) and assume that x(f) is eventually positive. The argument

if x(t) is eventually negative is similar and will be omitted.

We note first that

(5) liminfx(0 = 0.
í-»0O

If this is not the case, then there exists r>0 such that x(t) and g(x(t)) are

bounded below by positive constants for ?_7\ From (4) it follows that

v(i) - y(T) = - j q(s)g(x(s)) ds - -co.

Thus, for i_r1>7"for some Tx sufficiently large,

x'(t) ^(y(t) + F(t))lp(t) ̂  -(llp(t))

as F(t) is bounded and x77(x)_0. This implies that x(t)—*— co as t—>co

which further implies x(t) has a zero after Tx. This, however, is a con-

tradiction and (5) follows.

From the above argument, we see also that we must have

/*0O

(6) J   q(t)g(x(t)) dt < co.

Now it follows from (4) that /(f)i¡0 if x(i)_0 and so y(t) is bounded

above as ?->-oo. Thus, x'(t)^K¡p(t) for some A>0 and as p(t)>R>0,

x'(t) is bounded above as f—»-co. If

lim sup x(t) = N > 0
t~*<X>
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then there are sequences t„ and sn with tn<sn<tn+1 such that x(/)>0 for

t>t0, x(/n)=V/4, x(i„)=3V/4, and V/4^x(/)^3V/4 for tn^t^sn. As

x'(t) is bounded above, there is an e>0 such that s„ — tn^e and so

\\(t)g(x(t))dt^Mz] \\{t)dt

where M>0 is chosen so that g(x)>M when V/2^x^3V/4. It follows

now from (iv), howver, that f¿° o(t)g(x(t)) dt= co. This contradiction of

(6) completes the proof.

Consider now equation (2) and the Liouville transformation given by

s=J(l/p(u)) du, z(s) = x(z). Then z satisfies the equation

(7) z + p(t)q(t)g(z) = p(t)f(t)        ( ■ = djds)

and z(s) is nonoscillatory if and only if x(/) is nonoscillatory. Further, if

(ii) is valid, z(j)—>-0 as j—»-co if and only if x(/)—>-0 as /-»-co. Thus we may

determine the behavior of the nonoscillatory solutions of (2) by examining

the nonoscillatory solutions of (7). These considerations lead to the

following corollary which generalizes the main result of Hammett [1]

who required that both p(t) and q(t) be bounded below by a positive con-

stant and that /(/) be absolutely integrable on [0, co).

Corollary 2. Assume that (ii), (iii) and (v) are valid and thatp(t)q(t) is

bounded below by a positive constant. Then every nonoscillatory solution

x(t) of (2) tends to zero as /—»co.

Proof. From the above discussion, it follows that we need only show

that every nonoscillatory solution of (7) tends to zero as s—»-co. This

follows immediately from Theorem 1, however, upon noting that

pK0/(0 <*» = [/(«) d«
Jo Jo

where t=t(s) is the inverse function of s=s(t).
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