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RECOGNIZING MANIFOLDS AMONG

GENERALIZED MANIFOLDS

DENNIS  C.  HASS

Abstract. This paper provides various conditions, on the

complement of a point in a generalized manifold M, which imply

that M is a classical topological manifold. Similar characterizations

are given for //i-spheres and 3-cells.

This paper announces a few results in the classic quest for a property

which characterizes the topological manifolds among the generalized

manifolds.

It is well known, for example, that if a 3-gm M is a product space then

it is a manifold. In [1], Raymond showed that the factors are generalized

manifolds. Further, Wilder [2] says these factors are manifolds; thus, M

is too. Clearly, then a 3-gm which is locally a product space is also a

manifold.

Efforts have been made to weaken this hypothesis. In [3] K.W. Kwun

and F. Raymond proved that a 3-gm which is locally conical is a manifold.

M is locally conical if for all P in M, P has a neighborhood N such that

N—P—ElxbN. Our results show that one need not specify the factors in

advance. By assuming, only, that N—P is any product space, we can show

that M is still a manifold; see Theorem 3.

Lemma 1. If M is a connected m-gm, for m_2 such that for P in M,

M—P=A xB is a product space, then each of M—P, A, and B is homo-

logically trivial up through dimension m—2.

Proof. Proof of these claims is exactly analogous to Chapter 3 of the

author's dissertation [4], except for one minor change. We replace the

fact that TtkA X B=rrkA x TrkB with the Kiinneth formula and an induction

on k. It is also still true, that if B is compact, then M—P=E1xB.

Let M be a connected 3-gm.

Theorem 2. For P in M, if M—P is a product space, then M is either

S3 or E3.
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Proof. By Lemma 1, the factorization of M—P is either E1xE2 or

F1 x S2, respectively.

Theorem 3. If for each P in M, there is an open neighborhood N of P

such that N—P is a product space, then M is a classical 3-manifold.

Proof.   If 7Y is compact, then N=M and M=S3, by Theorem 2. If 7Y

is not compact, then N=E3 by Theorem 2.

Now, let M be a connected «z-gm, for m^4.

Theorem 4. If for P in M, M—P is a product space, then either M—P

is homologically trivial or M—P is E1 times a generalized (m-l)-sphere.

Proof. By Lemma 1, each of M—P=A XB, and A, and B is (m—2)-

connected with respect to homology. If neither A nor B is compact, then

each is homologically trivial and of course so is M—P. If B is compact,

then as mentioned in the proof of Lemma 1, we have M—P=E1xB.

Since B is closed and (m—2)-connected (homology) the theorem follows.

Theorem 5. If for P in M, M—P is a product of (many!) factors each

of dimension 2 or less, then M=Sm.

Proof.   In view of Lemma 1, we may assume that none of the factors

is compact. According to Theorem 4, each factor is either E1 or E2.

Next, let M be a compact connected «z-gm, for m^.5.

Theorem 6. For P in M, if M—P is a product of simply-connected

(homotopy fundamental group is trivial) PL manifolds A andB, then M=S™.

Proof. Using Theorem 4, M—P, A, and B are each (m—2)-connected

(homotopy this time!). If neither A nor B is compact, then each is

contractible.

J. Stallings [5] proved that in this case M—P=Em. Finally, let M be a

connected «z-gm, for m2:6.

Theorem 7. If for all P in M, there is a neighborhood N of P such that

N—P=AxB is a product of simply-connected manifolds A and B, then M

is a classical m-manifold.

Proof. By Theorem 4, each of N—P, A, and B is (m—2)-connected

(homotopy!). In light of Theorem 6, we may assume that B is compact.

By Lemma 1, N—P=E1xB and B is a homotopy (m—l)-sphere. Since

«z-1^5 we have 5=Sm_1 by the Poincaré theorem. Thus, N=Em as

desired.

That N—P=A xB inherits the manifold property from A and B is not

new; it is new that the homology groups of A and B may be calculated
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and need not be assumed. Note that none of the results here or in [4] relies

on the unproven Poincaré conjectures.
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