ON THE CONJUGATING REPRESENTATION OF A FINITE GROUP

K. L. FIELDS¹

ABSTRACT. It is shown that the sum of the elements of the character table of a finite group is at least # conjugacy classes + (# involutions - # classes of involutions) + (# real classes - # strongly real classes). Equality sometimes holds, e.g. for A_5 . Our investigations also demonstrate the appearance of a nontrivial real valued character (whose degree we can estimate) in the decomposition of the conjugating representation of a finite group possessing noncentral involutions.

1. In this note we show that any group G of even order g which possesses noncentral involutions also possesses a nontrivial real valued irreducible character γ of type R which appears with positive multiplicity in the decomposition of the conjugating representation ν of G acting on itself. We also obtain an upper bound on the degree of γ .

In fact, if $v = \sum a_x x$ is the decomposition of v into irreducible constituents, we show that $\sum \varepsilon(x)a_x \ge c + (m-r) + (k_1 - k_2)$ where c denotes the number of conjugacy classes of G, m the number of involutions, r the number of classes of involutions, k_1 the number of real conjugacy classes, k_2 the number of strongly real conjugacy classes (i.e. classes generated by the identity or by a product of at most two involutions), and $\varepsilon(x)=0$, ± 1 depending on whether x is of type C, R, or H (Frobenius-Schur [2]). Our upper bound on $\gamma(1)$ is $(g-c)/((m-r)+(k_1-k_2))$ (cf. Brauer-Fowler [1, Theorem 5A]).

2. Consider the class function v^* defined on G as $v^*(a)$ =the number of $Y \in G$ such that either $a^{-1}Ya = Y$ or $a^{-1}Ya = Y^{-1}$. We shall not make use of this fact, but v^* is the character of a permutation representation of G/Z (in fact, if G acts faithfully on a finite set S, and \sim is an equivalence relation on S which is preserved by G, then $\delta^*(a)$ =the number of $S \in S$ such that $S^a \sim S$ is the character of a permutation representation of S. Observe

$$(1) v^*(a) \leq |C(a^2)|,$$

Received by the editors October 26, 1971.

AMS 1969 subject classifications. Primary 2080.

¹ Research supported by National Science Foundation grant GP-28700.

the order of the centralizer of a^2 ;

(2)
$$v^*(a) = |C(a)| + t(a^2) - (v_a + 1)$$

where $t(a^2)$ is the number of solutions in G of $Y^2=a^2$, and v_a is the number of involutions in C(a) (observe y=ax satisfies $y^2=a^2$ if and only if $x^a=x^{-1}$); in particular, if a is an involution, then $v^*(a)=|C(a)|+m-v_a$. Hence we have

(3)
$$\frac{1}{g}\sum_{\alpha}(|C(a^2)|-r^*(a))\geq 0,$$

and in fact

(4)
$$\frac{1}{g} \sum_{a \in G} (|C(a^2)| - v^*(a)) \ge \frac{1}{g} \sum_{a^2=1} (g - |C(a)| - m + v_a).$$

We now compute both sides of (4). In what follows, a_i denotes an element of the *i*th conjugacy class $(a_0=e, a_1, \dots, a_r)$ are involutions, $a_{r+1}, \dots, a_{k_2-1}$ are strongly real), $n_i=|C(a_i)|$, and c_i is the number of involutions which invert a_i , $i \ge r+1$. We have

(5)
$$\sum \varepsilon(x)a_x - (c + k_1 - r - 1) \ge m - r - \frac{m^2}{g} + \sum_{i=1}^r \frac{\nu_i}{n_i}.$$

By Brauer-Fowler [1], equation (4):

$$\frac{m^2}{g} = \frac{m}{g} + \sum_{i=1}^{r} \frac{v_i - 1}{n_i} + \sum_{i=r+1}^{k_2 - 1} \frac{c_i}{n_i}$$

and so the right-hand side of (5) is

$$= m - r - \frac{m}{g} - \sum_{i=1}^{r} \frac{\nu_i - 1}{n_i} + \sum_{i=1}^{r} \frac{\nu_i}{n_i} - \sum_{i=r+1}^{k_2-1} \frac{c_i}{n_i}$$

$$= m - r - \sum_{i=r+1}^{k_2-1} \frac{c_i}{n_i} \ge m - r - (k_2 - r - 1).$$

Hence $\sum \varepsilon(x)a_x \ge c + (m-r) + (k_1 - k_2)$, or

(6)
$$\sum_{x \neq 1} \varepsilon(x) a_x \ge (m - r) + (k_1 - k_2).$$

Since m > r whenever there are involutions outside of the center of G, we must have under these circumstances at least one character x such that $\varepsilon(x) = 1$ and $a_x > 0$. If we let γ denote the character of this type of smallest degree, then

$$\sum_{x \neq 1} \varepsilon(x) a_x \le \sum_{\varepsilon(x) = 1; x \neq 1} a_x \le \sum_{\varepsilon(x) = 1; x \neq 1} a_x \frac{x(1)}{\gamma(1)} \le \frac{g - c}{\gamma(1)}$$

whence $(g-c)/((m-r)+(k_1-k_2)) \ge \gamma(1)$.

- 3. We conclude with three remarks:
- (1) Solomon [3] has observed that a_x is the sum of the elements of the xth row of the character table of G. Since $m = \sum_{x \neq 1} \varepsilon(x)x(1)$ (Frobenius-Schur [2]), we have the following relationship concerning the elements of the character table outside the first row and first column:

(7)
$$\sum_{x \neq 1; j \neq 1} \varepsilon(x) x(a_j) \ge k_1 - k_2 - r.$$

Equality holds for A_5 , for example, so we cannot in general replace \geq by >.

- (2) If $m-k_2+1<0$ it is more advantageous to simply compute inequality (3) above. It seems probable though, at least for groups with no normal 2-subgroups, that $m \ge k_2$.
 - (3) An upper bound for $\sum a_x$ is

$$\sum a_x^2 - c^2 + c = \frac{1}{g} \sum |C(a)|^2 - c^2 + c.$$

Hence, writing our inequalities together,

$$\sum n_i - c^2 + c \geqq \sum a_x \geqq \sum \varepsilon(x)a_x \geqq c + (m-r) + (k_1 - k_2).$$

REFERENCES

- 1. R. Brauer and K. A. Fowler, On groups of even order, Ann. of Math. (2) 62 (1955), 565-583. MR 17, 580.
- 2. G. Frobenius and I. Schur, Über die reelen Darstellungen der endlichen Gruppen, S.-B. Preuss. Akad. Wiss. 1906, 186-208.
- 3. L. Solomon, On the sum of the elements in the character table of a finite group, Proc. Amer. Math. Soc. 12 (1961), 962-963. MR 24 #A2619.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637