ON WHITEHEAD PRODUCTS1

KUO-TSAI CHEN

ABSTRACT. For every (n-1)-connected space X, the image of the Whitehead product map $\pi_n(X) \times \pi_n(X) \to \pi_{2n-1}(X)$ is estimated in terms of the nth and the 2nth Betti numbers.

Let X be a path connected space, and let p and q be positive integers. Denote by $[\pi_p, \pi_q](X)$ the subgroup of $\pi_{p+q-1}(X)$ generated by the image of the Whitehead product map

$$\pi_n(X) \times \pi_n(X) \to \pi_{n+q-1}(X)$$
.

The purpose of this note is to prove briefly the following result:

THEOREM 2. Let X be (n-1)-connected, $n \ge 1$, and let $b_r = \dim_k H^r(X;k)$, k being a field of characteristic $\ne 2$. Set $b = \frac{1}{2}b_n(b_n-1)$ or $\frac{1}{2}b_n(b_n+1)$ according as n is odd or even. If $b > b_{2n}$, then $[\pi_n, \pi_n](X)$ is nontrivial. If, moreover, n > 1, then the vector space $[\pi_n, \pi_n](X) \otimes_Z k$ is of dimension $\ge b - b_{2n}$.

Let ϕ denote the Hurewicz homomorphism. Let k be a commutative ring with 1. Throughout this note, k will be used for the coefficient of cohomology. There is a pairing

(1)
$$H^*(X) \otimes_k H^*(X) \times H_*(X) \otimes_Z H_*(X) \to k$$

such that, for $\bar{w}' \in H^p(X)$, $\bar{w}'' \in H^q(X)$, $z' \in H_p(X)$, $z'' \in H_q(X)$, $\langle \bar{w}' \otimes_k \bar{w}'', z' \otimes_Z z'' \rangle = \langle \bar{w}', z' \rangle \langle \bar{w}'', z'' \rangle$, when $p \neq q$, and $= \langle \bar{w}', z' \rangle \langle \bar{w}'', z'' \rangle + (-1)^{pq} \langle \bar{w}', z'' \rangle \langle \bar{w}'', z'' \rangle$, when p = q.

Denote by $\operatorname{Hom}([\pi_p, \pi_q](X), k)$ the k-module of homomorphisms from the group $[\pi_p, \pi_q](X)$ to the additive group of k. Theorem 2 is a consequence of the next assertion.

THEOREM 1. If N is the kernel of the cup product map

$$H^p(X) \otimes_k H^q(X) \to H^{p+q}(X),$$

Received by the editors January 5, 1971.

AMS 1970 subject classifications. Primary 55E15, 55B99.

Key words and phrases. Whitehead product, cup product, Steenrod functional product, (n-1)-connected space.

¹ Work supported in part by the National Science Foundation under NSF-GP-22929.

then there is a k-module homomorphism

$$g: N \to \operatorname{Hom}([\pi_n, \pi_a](X); k)$$

sending ξ to g_{ξ} such that

$$g_{\xi}([[\alpha'], [\alpha'']]) = \langle \xi, \phi[\alpha'] \otimes_{\mathbb{Z}} \phi[\alpha''] \rangle.$$

PROOF. We are going to give, in essence, a singular cohomological version of the proof for a more restricted result for fundamental groups given in [1]. Our basic tools are the functional product of N. Steenrod [4], and a result of H. Uehara and W. S. Massey [3].

Choose a base point of X. For $\xi = \sum \bar{w}_i' \otimes_k \bar{w}_i'' \in N$, choose $w_i' \in Z^p(X, x_0)$ and $w_i'' \in Z^q(X, x_0)$ representing respectively \bar{w}_i' and \bar{w}_i'' such that

$$\sum w_i' \cup w_i'' + \delta w = 0$$

for some $w \in C^{p+q-1}(X, x_0)$. Given a map $\alpha: (I^m, \mathring{I}^m) \to (X, x_0)$, $m \ge 1$, choose $v_i \in C^{p-1}(I^m, 0)$ with $\delta v_i = \alpha^* w_i'$. Observe that $v_i' \cup \alpha^* w_i'' \in C^{p+q-1}(I^m, \mathring{I}^m)$. Modulo $\alpha^* H^{p+q-1}(X)$, the cohomology class \bar{u} of $u = \sum v_i \cup \alpha^* w_i'' + \alpha^* w \in Z^{p+q-1}(I^m, \mathring{I}^m)$ is uniquely determined by ξ . Thus there is a k-module homomorphism

$$\lambda_q: N \to H^{p+q-1}(I^m, \mathring{I}^m)/\alpha^*H^{p+q-1}(X).$$

Verify that λ_{α} depends only on the homotopy class $[\alpha]$ and is trivial when $m \neq p + q - 1$. The homomorphism λ_{α} can be considered as the Steenrod functional product with respect to the map α arising from the relation $\sum \bar{w}_{i}' \cup \bar{w}_{i}'' = 0$.

Let \check{I}^m be oriented, and let z_m be the generator of $H_m(I^m, \mathring{I}^m)$. Define

$$g: N \to \operatorname{Hom}([\pi_n, \pi_a](X); k)$$

such that, for $[\alpha] \in [\pi_p, \pi_q](X)$,

$$g_{\varepsilon}([\alpha]) = \langle \bar{u}, z_m \rangle, \qquad m = p + q - 1.$$

Since $\phi[\pi_p, \pi_q](X)=0$, g_{ξ} is well defined and can be shown to be a homomorphism. It follows from a slight modification of Theorem IV [3] that

$$g_{\xi}([[\alpha'], [\alpha'']]) = \langle \xi, \phi[\alpha'] \otimes_{\mathbb{Z}} \phi[\alpha''] \rangle.$$

Hence the theorem is proved.

PROOF OF THEOREM 2. We have p=q=n and a field k of characteristic $\neq 2$. Let the pairing

$$H^n(X) \otimes_k H^n(X) \times H_n(X) \otimes_Z H_n(X) \to k$$

be the restriction of the pairing (1). We have an induced linear map

$$h: H^n(X) \otimes_k H^n(X) \to \operatorname{Hom}(H_n(X) \otimes_Z H_n(X), k)$$

whose image is denoted by B. Then $\dim_k B = b$.

Write $N' = hN \subset B$. The cup product of $H^n(X)$ has a factorization

$$H^n(X) \otimes_k H^n(X) \xrightarrow{h} B \to H^{2n}(X),$$

and N' is the kernel of the map $B \rightarrow H^{2n}(X)$. It follows that $\dim_k N' \ge b - b_{2n}$. There is an isomorphism $gN \approx N'$ with $g_{\xi} \mapsto g'_{\xi}$ such that

$$g'_{\xi}(\phi[\alpha'] \otimes_{\mathbb{Z}} \phi[\alpha'']) = g_{\xi}([[\alpha'], [\alpha'']]).$$

Consequently,

$$\dim_k \operatorname{Hom}([\pi_n, \pi_n](X), k) \ge \dim_k N' \ge b - b_{2n}.$$

For n>1, $\dim_k[\pi_n, \pi_n](X)\otimes_Z k$ and $\dim_k \operatorname{Hom}([\pi_n, \pi_n](X), k)$ are either equal or both ∞ .

COROLLARY. If X is (n-1)-connected, n>1, and if $b_{2n}=0$, then

$$\dim[\pi_n, \pi_n](X) \otimes_Z k = b,$$

provided k is of characteristic $\neq 2$.

BIBLIOGRAPHY

- 1. K. T. Chen, A sufficient condition for nonabelianness of fundamental groups of differentiable manifolds, Proc. Amer. Math. Soc. 26 (1970), 196-198.
- 2. —, Algebras of iterated path integrals, Trans. Amer. Math. Soc. 156 (1971), 359-379.
- 3. H. Uehara and W. S. Massey, *The Jacobi identity for Whitehead products*, Algebraic Geometry and Topology (A Symposium in Honor of S. Lefschetz), Princeton Univ. Press, Princeton, N.J., 1957, pp. 361-377. MR 19, 974.
- 4. N. E. Steenrod, Cohomology invariants of mappings, Ann. of Math. (2) 50 (1949), 954-988. MR 11, 122.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801