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ON THE RELATIVE GROUP COHOMOLOGY RING

G.  R.   CHAPMAN1

Abstract. The product structure on the Hochschild-Serre

spectral sequence generalizes to the spectral sequences of Butler-

Horrocks. It is shown that Evens' proof of the finite generation

of the integral cohomology ring of a finite group does not gener-

alize to the relative cohomology groups of Adamson.

Introduction. If G is a finite group, N<¡G and A: is a G-ring, then the

product on the Hochschild-Serre spectral sequence H*(G/N, H*(N, &))=>

77*(G, k) arising from the cup product on the E2 term induces (up to sign)

the cup product on 77* (G, k) [5]. Evens [3] uses the product structure on a

certain Hochschild-Serre spectral sequence to prove that 77* (G, Z) is

finitely generated, where Z denotes the integers with trivial G-moduIe

action. Let G2£<ji he subgroups of G. Adamson [1] and Hochschild [4]

study the class of G2-split sequences of G-modules and denote the corre-

sponding relative derived functors of HomG, ®G by Ext(G Cr,, Tor'0,02'.

Then ToriG'°2>(Z, -) = Hn(G, G2; -), Ext?0,0f,(Z, -)=/7"(G, G2; -)

which are the homology and cohomology groups of G relative to G2. Butler

and Horrocks [2] construct a spectral sequence depending on G, Gx, G2

with coefficients in k which converges to H*(G, G2; k) and reduces to the

Hochschild-Serre when GX<¡G, G2 = {e}. In this paper, we note that a

product can be introduced on the Butler-Horrocks spectral sequence which

generalizes that on the Hochschild-Serre and induces a relative cup product

on 77*(G, G2; k). The question naturally arises: Can the method of Evens

be generalized to the spectral sequence of [2] to prove the finite generation

of 77*(G, G2;Z)1 In this paper, we indicate how the answer depends on

the nonvanishing of a relative restriction map (i.e. the composition of the

T-transformation 77*(G, G2; Z)->-77*(G, Z) [2]) and a restriction homomor-

phism. To establish the nonvanishing of this map, G has to be embedded

in a certain semidirect product in such a way that G2 is conveniently

situated. This can only be done under favourable conditions, and we prove

the following theorem which shows that under these conditions, the

relative restriction is identically zero. This means that Evens' method

cannot be generalized.
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Theorem. Let H, K be subgroups of G such that H is cyclic, normalizes

K and has a generator contained in the set [G, K]0-K, where [G, K]0=

{gkg^kr1; g e G,k e K). If M is an HK-trivial G-module with underlying

group free, then the relative corestriction Hn(H, M)-*Hn(G, K; M) and

the relative restriction Ext"G,X)(M, Z)—>-Extjï(M, Z) are zero (n^O).

1. The generalization of Evens' method. Let G3 be a central prime

order subgroup of the finite group G. Evens [3] notes that the Hochschild-

Serre spectral sequence E of the extension 1—«-G3->-G—*-G/G3->-l (with

integer coefficients) displays a periodicity El'Q^E2'Q+2, the isomorphism

being multiplication by the generating element f of El'2 (=//2(C73, Z)).

The hub of Evens' proof of the finite generation of H*(G, Z) is that the

restriction r2l:H2l(G, Z)->H2l(G3, Z) is epic for some />0, which means

that f ' e E°¿21. This implies that, since any element of E\'Q can be written

in the form £il-u with ueE2"~2il (q—2il^2l), the spectral sequence

terminates. This termination is essentially Evens' proof. Denote by B

the Butler-Horrocks spectral sequence for the groups G, G2G3, G2 with

integral coefficients. We note that a product can be introduced on this

spectral sequence such that when G2={e} (so that B becomes E) this

product is that of [5]. The details are omitted, since they are not needed

in the sequel. We attempt to terminate B by methods parallel to those

used by Evens in terminating E. We make the assumption G2^G. This

involves no loss of generality, since for G2<G, the isomorphism

H*(G, G2;Z)^H*(GjG2,Z) [1] is a ring isomorphism, so it is known

that H*(G, G2; Z) is finitely generated in this case.

Suppose we prove the relative restriction

T .2m

r2m:H2m(G, G2; Z) —> H2m(G, Z) —> H2m(G3, Z)

is epic for some m>0. Then the same would be trivially true for r2m, and

from [2, p. 190] we would have the following commutative exact diagrams:

0 0

1 I
F^//2m(G, Z)      =      F^//2m(G, Z)

1 1
0^     Fcr3H2m(G, Z)     -+        H2m(G,Z) —y H2m(G3, Z) -> 0

I i II
0 -+ E°¿2m -► H2m(G3, Z) ->■ 0

i

0
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0 0

4 4
FGzG3H2m(G> G2; Z) = FatG3H2m(G, G2; Z)

I 4
-2m

0^ Ker/=2m ->     772m(G, G2;Z)     ^ 772m(G3, Z) ^ 0

I II
T^2"* -* 772m(G3, Z) -* 0

I
0

where Fq , Fa2a3 denote the subgroups consisting of those extensions

which split in one place over G3, G2G3 respectively. Moreover, the t-

transformation 772m(G, G2;Z)->-H2m(G,Z) of [2] induces a commutative

map of the latter to the former, and in particular an epimorphism

B°¿2m—>E°¿2m. Thus if the relative restriction were epic in some positive

even degree, £2m would have a preimage in the relative spectral sequence.

To try to obtain this result, we note that in [3, §5], G (acting on itself

by left translation) is embedded in R, the centralizer of G3 in the group Sa

of permutations of G. Put

n times

G3n = G3 X G3 x • • • x G3.

It is shown that R is the semidirect product of G3 with S„ where / is the

index of G3 in G, and that 772i(7?, Z)—H2l(G3, Z) is epic. In the relative

case, G acts on the set M={gxG2, g2G2, ■ • • , gsG2} of left cosets of G2 in G

by left translation, and if G2 is core free this embeds G in SM, the group of

permutations of M. If Y is the centralizer of G3 in SM, then GsT and

p e Y iff phgiG2=hpgiG2 V/i e G3, l_i_s. If we assume G2C\G3={e),

this means that p is a map of G2G3 cosets, so that Y is the semidirect

product of G3 with St, where / is the index of G2G3 in G (see [3, §5]).

To prove H2t(Y, G2;Z)-+H2t(G3,Z) epic, we need a (r, G2)-resolution.

Evens' ^-resolution is obtained by combining an ^-resolution with

a G3-resolution. If G2^G\ it may be possible to combine a (G3, G2)-

resolution with an ^¡-resolution to produce a (Y, G2)-resolution. On the

other hand, if G2^St we could try to combine a G3 with a (St, G2)-

resolution. The latter case appears to have no meaningful interpretation.

However, G2^G3 iff VA: e G2, z\hteG3 such that kgiG2=higiG2 for

l_i_?. This is easily seen to be equivalent to G2G3<dG. When this is so,

the image of k e G2 in Y is hx x «2 x • • • x /i(.
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2. Proof and application of the Theorem. Among the conditions

accumulated on G2, G3 are: G3 is a central prime order subgroup of G,

G2G3<|G and G2toG. The following theorem proves that under these

conditions the relative restriction is identically zero in all nonzero degrees.

Thus Evens' method cannot be generalized.

Theorem. Let H, K be subgroups of G such that H is cyclic, normalizes

K and has a generator contained in the set [G, K]0-K, where [G, K]0=

{gkg^kr1^ e G, k e K}. If M is an HK-trivial G-module with underlying

group free, then the relative corestriction Hn(H, M)->//n(G, K; M) and

the relative restriction i?":Ext"öiÄ:)(M, Z)—>-Exfjgr(M, Z) are zero (n^O).

Corollary. If G3 is a prime order central subgroup of G, G2G3<G

and G2&G, then fn:Hn(G, G2;Z)^Hn(G3, Z) is zero (n^O).

Proof. Let k e G2, g e G. Since G2G3<jG, gkg-1 e G2G3—i.e. gkg~1=

hxkx for some hx e G3, kx e G2. Moreover, 3 a choice of k e G2, g e G

such that «x#e, otherwise G2<¡Gcontrary to hypothesis. Hence we havehx=

gkg"1^1 for some hxj^ee G3. Since G3 is of prime order, hx generates G3.

Thus taking G2=A, G3=H satisfies the conditions of the theorem.

Proof of the Theorem. Let H={y;yh=e} with ye[G, K]0-K, and

put A=2¿I¿ y\ Tensors are over Z unless otherwise indicated. If W^-^-Z

denotes the standard //-free resolution of Z [6, Chapter IV], then by

hypothesis Y^ = (W^®M)^-M is an //-free resolution. Let ß*—>-M be the

standard (G, A)-projective resolution of M [6, Chapter IX, §8]. We

prove the theorem by constructing a chain map y»# : Y^—^-ß^ extending the

identity on M.

Lemma. y>* can be chosen so that y>2n+x(Y2n+x)'^d(ß2n+2)+IHKß2n+x,

where d is the differentiation in /?„., and IHK is the augmentation ideal for

HK.

Proof. Let me M. For «j^O, denote by An(m) the element of ß2n_x

defined inductively by A°(m)=m, An(m)=N®Ky®KAn~1(m) («^1).

(a) Since M is //-trivial,yAn(m) = A"(m) for «^0. (b) From this it follows

by induction on « that dAn(m)=0 for «_T. (c) Further, since H normal-

izes K and M is A-trivial, induction on « establishes kAn(m)=An(m)

WkeK, «=0.
Define the //-homomorphism y* by

tp2n(l ®m)=l®K An(m),

YWiO ®m)= 1 ®Ky ®K A"(m),       « ^ 0.

Then (a) implies d°f2n+x=y>2n°((y—1)®1),  (b) implies ^2«-i0(A®l) =

d°ip2n (both for «^0) so that ip^ is a chain map extending the identity on M.
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(d) Now y e [G, A]0- K, so that y^gkg^kï1 for some g e G, k, kx e K.

Thus

ykx(g ®k g~l ®k ¿n(™)) = 8®K %_1 ®k An(m)       by (d),

= g®K g-ly ®k kxAn(m)   by (d),

= g ®k g~xy ®k An(m)       by (c).

But

d(g ®k g~* ®k y ®k An(m)) = rp2n+i(\ ® m) - g ®K g~xy ®K An(m)

+ g®K g'1 ®k ¿n(m)   by (a) and (b),

so

YWiO ®m) = d(g ®K g-1 ®Ky ®K An(m))

+ (ykx - l)(g ®K g'1 ®k An(m)),       it > 0,

which proves the lemma.

Consider the diagram

z ®H r* —> z®hm

Z®aß*  -^Z®aM

Passing to homology, the map induced by 1®^* is the relative co-

restriction. It follows directly from the lemma that this map is zero.

Put T—Ker{ß2n+x-^ß2n}, then we have the following commutative exact

diagrams

0—>Z® Jtf—► Y2n+X—> Y2n

\0                      k2„+l h>2n

0-►        T        -► ßln+l  -► ßin

rlomz(ß2n+x,Z)    —*     Homz(f,Z)      —>   ExtfS+¿,(M, Z) —► 0

ÍWto+J jlê] \n2n+2

Homz( Y2n+X, Z) —> Homz(Z ® M, Z) —► Extg+î(Af, Z)       —> 0

where S-X¡IaX, X=X\IHX. Let U=\m{ß2n+2-^ß2n+1). Then 0^

H2n+2(G, K; M)->-T->-U-+0 is exact, and since H*(G, K; M) has exponent

(G:A) [2, Chapter 28], /' induces an isomorphism (f>:Homz(f,Z)^

Homz(U,Z). From the lemma, y>2n+i(T2n+1)c U and so [y2n+i]°<f> gives

a map Homz(f, Z)^-Homz(T2n+1,Z). Since

[-V®l]o[yÍB+1]o¿ = [0],

it follows that »i2"+2=0, which completes the proof of the theorem.
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