ON CERTAIN FIBERINGS OF $M^{2} \times S^{1}$

WOLFGANG HEIL ${ }^{1}$

Abstract

Using a theorem of Stallings it is shown that the product of S^{1} and a surface of genus $g>1$ admits for every integer $n \geqq 0$ a fibering over S^{1} with a surface of genus $n(g-1)+g$ as fiber. Conversely, these are all possible such fibrations (up to equivalence). Let N be a Seifert fiber space which is locally trivial fibered over S^{1} with fiber a surface. It is shown that any two such fiberings of N over S^{1} are equivalent if the fibers are homeomorphic.

In [8] and [1] it is shown that the 3-manifold $M=F \times S^{1}$, where F is an orientable closed surface of genus $g>1$, admits for every number $n \geqq 0$ a fibering over S^{1} with a surface T_{n} of genus $n(g-1)+g$ as fiber. In this note we show that this result follows immediately from Stallings' theorem [7] (this applies also if F is bounded or nonorientable). It is shown that these are all possible fibrations of M over S^{1} with fiber a surface and this is generalized to Seifert fiber spaces.

1. Let F be an orientable surface of genus $g>1$ and m boundary components, let $M=F \times S^{1}, \mathfrak{F}=\pi_{1}(M)$,

$$
\begin{aligned}
\mathfrak{G}=\left\{a_{1}, b_{1}, \cdots,\right. & a_{g}, b_{g}, s_{1}, \cdots, s_{m}, h: s_{1} \cdots s_{m}\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]=1, \\
& {\left.\left[a_{i}, h\right]=\left[b_{i}, h\right]=\left[s_{k}, h\right]=1(i=1, \cdots, g ; k=1, \cdots, m)\right\} }
\end{aligned}
$$

Let \boldsymbol{Z} be represented by the group of integers and construct an epimorphism $\phi:(\mathfrak{G} \rightarrow \boldsymbol{Z}$ as follows

$$
\begin{aligned}
\phi\left(a_{1}\right) & =1, & \\
\phi\left(a_{i}\right) & =\phi\left(b_{j}\right)=0 & (i=2, \cdots, g ; j=1, \cdots, g), \\
\phi(h) & =n>0, & \\
\phi\left(s_{k}\right) & =\gamma_{k} & (k=1, \cdots, m) .
\end{aligned}
$$

(γ_{k} are arbitrary integers, subject to the condition $\gamma_{1}+\cdots+\gamma_{m}=0$.)

Received by the editors January 6, 1971 and, in revised form, August 7, 1971.
AMS 1970 subject classifications. Primary 57A10; Secondary 55A10.
Key words and phrases. Fiberings of 3-manifolds over S^{1}, Seifert fiber space, Nielsen invariants for surfaces.
${ }^{1}$ The results of this note are contained in the author's Diplom-arbeit, Frankfurt/M, 1967, written under the supervision of Professor H. Zieschang.
(a) If F is closed (i.e. $m=0$), computing $\mathfrak{N}_{n}=\operatorname{ker} \phi$ using the Reidemeister-Schreier method, we obtain

$$
\begin{aligned}
& \mathfrak{N}_{n}=\left\{a_{i, k}, b_{j, k}, h_{k}: a_{i, k} h_{k} a_{i, k+n}^{-1} h_{k}^{-1}=1, b_{j, k} h_{k} b_{j, k+n}^{-1} h_{k}^{-1}=1,\right. \\
& h_{k+1} h_{k}^{-1}=1, b_{1, k+1} b_{1, k}^{-1} \prod_{l=2}^{g}\left[a_{l, k}, b_{l, k}\right]=1 \\
& \\
& \quad(i=2, \cdots, g ; j=1, \cdots, g ;-\infty<k<\infty)\} .
\end{aligned}
$$

Here $a_{i, k}=a_{1}^{k} a_{i} a_{1}^{-k}, b_{j, k}=a_{1}^{k} b_{j} a_{1}^{-k}, h_{k}=a_{1}^{k} h a_{1}^{-(k+n)}$. This is equivalent to

$$
\begin{aligned}
& \mathfrak{N}_{n}=\left\{h_{0}, b_{1,1}, a_{i, 1}, b_{i, 1}, \cdots, a_{i, n}, b_{i, n}:\left[h_{0}^{-1}, b_{1,1}\right] \prod_{j=2}^{g}\left[a_{j, 1}, b_{j, 1}\right]\right. \\
&\left.\times \prod_{j=2}^{g}\left[a_{j, 2}, b_{j, 2}\right] \cdots \prod_{j=2}^{g}\left[a_{j, n}, b_{j, n}\right]=1(i=2, \cdots, g)\right\}
\end{aligned}
$$

which is the fundamental group of an orientable closed surface of genus $n(g-1)+1$. Thus the theorem in the introduction follows by applying Stallings' theorem [7].
(b) If $\partial M \neq \varnothing$ (i.e. $m>0$) we obtain, for $\mathfrak{N}_{n}=\operatorname{ker} \phi$,

$$
\begin{aligned}
& \mathfrak{N}_{n}=\left\{a_{i, k}, b_{j, k}, s_{l, k}, h a_{1}^{-n}(i=2, \cdots, g ; j=1, \cdots, g ;\right. \\
& k=0, \cdots, n-1 ; l=1, \cdots, m-1)\} \\
& \text { (where } s_{l, k}=a_{1}^{k} s_{l} a_{1}^{\gamma_{1}-k} \text {), }
\end{aligned}
$$

a free group of rank $n(2 g+m-2)+1$. By Stallings' theorem M fibers over S^{1} with fiber a surface T_{n} with $\pi_{1}\left(T_{n}\right)=\mathfrak{N}_{n} . M$ is a (trivial) Seifert fiber space with orbit surface $F . T_{n}$ is a branched covering of F (see the proposition, §3). Since M has no singular fibers this covering is without branch points. Thus if g^{\prime} denotes the genus and m^{\prime} the number of boundary components of T_{n} and if the covering $T_{n} \rightarrow F$ is η-sheeted, we have for the Euler characteristics

$$
2 g^{\prime}+m^{\prime}-2=\eta(2 g+m-2)=n(2 g+m-2)
$$

Thus: For every natural number n there exists a surface T_{n} which is an n-sheeted covering of F and such that M admits a fibering over S^{1} with fiber T_{n}.
(c) The same method carries over to the nonorientable case.
2. The fiberings of $\S 1$ are all possible fiberings of M over S^{1} with fiber a surface. This can be seen as follows:

Let $\phi: \mathfrak{G} \rightarrow \boldsymbol{Z}$ be any epimorphism.

Let

$$
\begin{array}{ll}
\phi\left(a_{i}\right)=\alpha_{i} & (i=1, \cdots, g), \\
\phi\left(b_{i}\right)=\beta_{i} & (i=1, \cdots, g), \\
\phi\left(s_{k}\right)=\gamma_{k} & (k=1, \cdots, m), \\
\phi(h)=n &
\end{array}
$$

Let g.c.d. $\left(\alpha_{1}, \beta_{1}, \cdots, \alpha_{g}, \beta_{g}\right)=d$. Since ϕ is an epimorphism, we have g.c.d. $\left(d, \gamma_{1}, \cdots, \gamma_{m}, n\right)=1$.

The assertion follows from the following:
Lemma. Let $\phi: \mathfrak{G} \rightarrow Z$ be any epimorphism and let x be any one of the generators $a_{1}, b_{1}, \cdots, a_{g}, b_{g}$. Then there exists an automorphism μ of $\mathfrak{5}$ which is induced by a homeomorphism of M, such that $\phi \cdot \mu(x)=$ g.c.d. (d, n) and $\phi \cdot \mu(y)=0$, where $y \in\left\{a_{1}, b_{1}, \cdots, a_{g}, b_{g}\right\}-\{x\}$. If F is not a torus, we may assume $\phi(h)>0$.

Proof. μ is a composition of the following automorphisms (we write down the generators which are not kept fixed).

$$
\begin{aligned}
\mu_{1}^{(i)}\left(a_{i}\right) & =a_{i} b_{i}^{k} \quad(k \in \mathbf{Z}) \quad(i=1, \cdots, g), \\
\mu_{2}^{(i)}\left(b_{i}\right) & =b_{i} a_{i}^{l} \quad(l \in \mathbf{Z}) \quad(i=1, \cdots, g), \\
\mu_{3}\left(a_{1}\right) & =a_{1} a_{2} b_{2}^{-1}, \\
\mu_{3}\left(b_{1}\right) & =b_{2} a_{2}^{-1} b_{1} a_{2} b_{2}^{-1}, \\
\mu_{3}\left(a_{2}\right) & =b_{2} a_{2}^{-1} b_{1} a_{2} b_{2}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{1}^{-1} a_{2} b_{2}^{-1}, \\
\mu_{3}\left(b_{2}\right) & =b_{2} b_{2} a_{2}^{-1} b_{1}^{-1} a_{2}^{-1} b_{2}^{-1}, \\
\mu_{4}\left(a_{1}\right) & =a_{1} a_{2}^{-1} b_{2}^{-1}, \\
\mu_{4}\left(b_{1}\right) & =b_{2} a_{2} b_{1} a_{2}^{-1} b_{2}^{-1}, \\
\mu_{4}\left(a_{2}\right) & =b_{2} a_{2} b_{1} a_{2}^{-1} b_{2}^{-1} b_{1}^{-1} b_{2}^{-1} b_{1}^{-1} a_{2}^{-1} b_{2}^{-1}, \\
\mu_{4}\left(b_{2}\right) & =b_{2} a_{2} b_{2}^{-1} a_{2}^{-1} b_{2}^{-1} a_{2}^{-1}, \\
\mu_{5}^{(i)}\left(a_{i}\right) & =a_{i+1}, \\
\mu_{5}^{(i)}\left(b_{i}\right) & =b_{i+1}, \\
\mu_{5}^{(i)}\left(a_{i+1}\right) & =\left[a_{i+1}, b_{i+1}\right]^{-1} a_{i}\left[a_{i+1}, b_{i+1}\right], \\
\mu_{5}^{(i)}\left(b_{i+1}\right) & =\left[a_{i+1}, b_{i+1}\right]^{-1} b_{i}\left[a_{i+1}, b_{i+1}\right] \quad(i \text { taken mod } g), \\
\mu_{6}\left(a_{1}\right) & =a_{1} h^{ \pm 1}, \\
\mu_{7}(h) & =h^{-1} .
\end{aligned}
$$

It is not difficult to see that these are automorphisms and furthermore that they are induced by homeomorphisms of M, since they leave the
peripheral system of $(5$ fixed (see [2]). These automorphisms were suggested by the paper of J. Nielsen [3].

Let

$$
A=\left(\begin{array}{ll}
\alpha_{1}, & \beta_{1} \\
\cdot & \\
\cdot & \\
\cdot & \\
\alpha_{g}, & \beta_{g}
\end{array}\right)
$$

The automorphisms μ_{1} and μ_{2} change the map ϕ as follows:

$$
\begin{array}{ll}
\left(\mu_{1}\right) & \phi\left(a_{i}\right) \rightarrow \phi\left(a_{i}\right)+k \phi\left(b_{i}\right), \\
\left(\mu_{2}\right) & \phi\left(b_{i}\right) \rightarrow \phi\left(b_{i}\right)+l \phi\left(a_{i}\right) .
\end{array}
$$

Using the Euclidean algorithm and $\left(\mu_{1}\right),\left(\mu_{2}\right)$, we transform A into

$$
A^{\prime}=\left(\begin{array}{ll}
d_{1}, & 0 \\
\cdot & \\
\cdot & \\
\cdot & \\
d_{g}, & 0
\end{array}\right), \quad \text { where } d_{i}=\left(\alpha_{i}, \beta_{i}\right)
$$

Similarly, using $\mu_{3}, \mu_{4}, \mu_{5}, \mu_{6}$ we change A^{\prime} into

$$
\left(\begin{array}{cc}
0, & \text { g.c.d. }(d, n) \\
0 & 0 \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
0 & 0
\end{array}\right)
$$

The last statement of the lemma follows by considering μ_{7} and observing that $(\operatorname{ker} \phi) \cap \boldsymbol{Z}(h)=1$, where $\boldsymbol{Z}(h)$ is the cyclic subgroup of \mathfrak{G} generated by h (see [5, proof of Satz 7]).
3. A comparison of Nielsen's and Seifert's invariants. In this section we show how for Seifert fiber spaces that are fibered over S^{1} the fiber is a branched covering of the Seifert (orbit) surface. This will be used (in the next section) to show the uniqueness of the fibration as mentioned in the introduction.

Let $\phi: F \rightarrow F$ be an orientation preserving homeomorphism of finite order n of a (compact) orientable surface F of genus g and r boundary components. Let P be a fixed point of order λ. The orbitspace of ϕ is a surface \bar{F} and P covers a point $\bar{P} \in F$. A simple closed curve s in F which covers a simple closed curve \bar{s} about \bar{P}, covers it λ times. We have m
disjoint curves lying over \bar{s}, where $n=\lambda \cdot m$. Choose an orientation on F.
Let \bar{Q} be any point on \bar{s}. Q is covered by λ points on s lying over \bar{Q}. The (oriented) arc on s which starts at Q and covers \bar{s} once ends at a certain point $\phi^{\sigma m} Q$. Note that g.c.d. $(\sigma, \lambda)=1$. The valenz of P is defined to be the triple (m, λ, σ). A multiple point is one for which $\lambda>0$.

Theorem (Nielsen [3]). Let F, F^{\prime} be homeomorphic closed surfaces, let $\phi: F \rightarrow F$ and $\phi^{\prime}: F^{\prime} \rightarrow F^{\prime}$ be homeomorphisms of finite order n. Then ϕ and ϕ^{\prime} are equivalent (i.e. there exists a homeomorphism $\psi: F \rightarrow F^{\prime}$ such that $\left.\phi \psi=\psi \phi^{\prime}\right)$ iff F and F^{\prime} have the same valenz-numbers at multiple points.

For a description of the Seifert invariants (μ, ν) of a fibered solid torus and a 3-manifold, see [6].

Let M be a Seifert fiber space which admits a fibering over S^{1} with fiber a surface F of genus >1. Thus M can be obtained from $F \times I$ (where I denotes the unit interval $[0,1]$) by identifying $F \times 0$ with $\phi F \times 1$, where $\phi: F \rightarrow F$ is a homeomorphism and we write $M=F \times I / \phi$. It is easy to see that M is a Seifert fiber space iff $\pi_{1}(M)$ has nontrivial center and $\pi_{1}(M)$ has nontrivial center iff ϕ is isotopic to a homeomorphism ϕ^{\prime} of finite order (see e.g. [9, p. 514]). Since ϕ and ϕ^{\prime} determine homeomorphic 3 -manifolds [2], we may assume that ϕ has finite order n. We construct a Seifert fibration of M as follows: Let P in F be a fixed point of order $\lambda>1$. Then $P, \phi P, \cdots, \phi^{m-1}(P)$ (where $\lambda m=n$) cover the same point \bar{P} in the orbit surface \bar{F}. Now $F \times I$ has a trivial fibering as a line bundle. Take a neighborhood $U(P)$ of P which does not contain any other multiple point and such that $\phi^{m}(U(P))=U(P)$. Then we have neighborhoods

$$
U(P) \times I, \phi U(P) \times I, \cdots, \phi^{m-1} U(P) \times I \quad\left(\phi^{m} U(P)=U(P)\right)
$$

of $P \times I, \phi P \times I, \cdots, \phi^{m-1}(P) \times I$ in $F \times I$ and they match together to form a fibered solid torus in M. The fiber in M which contains P is composed of m lines $P \times I, \cdots, \phi^{m-1}(P) \times I$ and the fiber through any point Q of $U(P)$ $(Q \neq P)$ is composed of n lines $Q \times I, \cdots, \phi^{n-1}(Q) \times I$. Hence the fibers through $U(P)$ form a fibered neighborhood of an exceptional fiber of order $n / m=\lambda$.

Note that the orbit surface \bar{F} is the Seifert surface of the Seifert fibration.
Let $\bar{P} \in \bar{F}$ be a multiple point of order λ, \bar{s} a small simple closed curve around $\bar{P}, \bar{Q} \in \bar{s}$ an arbitrary point and s in F a closed curve which covers \bar{s}. On s there are exactly λ points which cover \bar{Q} :

$$
Q, \phi^{\sigma m} Q, \cdots, \phi^{(\lambda-1) \sigma m} Q \quad(\text { exponents } \bmod n)
$$

where σ is the valenz. To find $\phi^{m} Q$ in this sequence, we have to find an integer δ such that $\delta \sigma \equiv 1(\lambda)$. Now s is mapped onto itself for the first time by ϕ^{m} and ϕ^{m} is equivalent to a rotation of $2 \pi \delta / \lambda$ of a circle. Hence the

Seifert invariants μ, ν of M and the valenz (m, λ, σ) of the map $\phi: F \rightarrow F$ satisfy

$$
\begin{aligned}
& \sigma \equiv \nu(\bmod \mu), \quad \text { where } \delta \sigma \equiv 1(\bmod \lambda), \\
& \lambda=\mu
\end{aligned}
$$

Now if M_{1} and M_{2} are homeomorphic Seifert fiber spaces, then the corresponding Seifert surfaces are homeomorphic and M_{1} and M_{2} have the same numbers μ, ν by the classification theorem of Seifert fiber spaces [5].

Hence we have the following:
Proposition. If $M_{1}=F_{1} \times I / \phi_{1}$ and $M_{2}=F_{2} \times I / \phi_{2}$ are homeomorphic and ϕ_{i} is a homeomorphism of order $n_{i}(i=1,2)$, then F_{1} and F_{2} are (branched) coverings of the same orbit surface $(=$ Seifert surface) F with the same number t of branch points (on \bar{F}) which are of the same orders λ.
4. Equivalent Stallings fibrations. Two fiberings ($M_{1}, p_{1}, S^{1}, F_{1}$) and $\left(M_{2}, p_{2}, S^{1}, F_{2}\right)$ are equivalent iff there exists a homeomorphism $\psi: M_{1} \rightarrow M_{2}$ with $\psi p_{2}=p_{1}$. Let F_{i} be a closed orientable surface of genus $g_{i}>1(i=1,2)$ and let $\phi_{i}: F_{i} \rightarrow F_{i}$ be a homeomorphism of finite order n_{i}.

Theorem. Let $M_{i}=F_{i} \times I / \phi_{i}(i=1,2)$. Assume F_{1} and F_{2} are homeomorphic. Then the following are equivalent:
(a) M_{1} is homeomorphic to M_{2}.
(b) M_{1} is equivalent to M_{2}.
(c) ϕ_{1} is equivalent to ϕ_{2} (and is of the same order).

In particular, it follows that if M is a closed Seifert fiber space which admits two fibrations over S^{1} with fibers F_{1} and F_{2}, then either F_{1} is not homeomorphic to F_{2} or the two fibrations are equivalent.

Proof. If ϕ_{1} and ϕ_{2} are equivalent then it is not hard to see that M_{1} and M_{2} are equivalent (see e.g. [2]). Thus (c) \rightarrow (b) \rightarrow (a). We show (a) \rightarrow (c): Let M_{1} be homeomorphic to $M_{2} . M_{1}$ and M_{2} are Seifert fiber spaces and have the same Seifert surface \bar{F}. If t_{i} denotes the number of branch points (on F) of the orbit surfaces of $\phi_{i}(i=1,2)$ and $\lambda_{j}^{(i)}$ the orders of the branch points ($i=1,2 ; j=1, \cdots, t_{i}$) we have (by the proposition) $t_{1}=t_{2}=t$ and $\lambda_{j}^{(1)}=\lambda_{j}^{(2)}=\lambda_{j} \quad(j=1, \cdots, t)$. Consider the branched covering $F_{i} \rightarrow F$ $(i=1,2)$ and cut out a small disc D_{j} in F containing a branch point of order $\lambda_{j}^{(i)}$ and remove the $m_{j}^{(i)}$ discs in F_{i} which cover D_{j} (where $n_{i}=$ $\left.\lambda_{j}^{(i)} m_{j}^{(i)}\right)$. Do this for all branch points $\bar{P}_{j}(j=1, \cdots, t)$ and get an unbranched covering $F_{i}^{\prime} \rightarrow \bar{F}^{\prime}$. Clearly, if r_{i} denotes the number of boundary components of F_{i}^{\prime}, we have

$$
r_{i}=m_{1}^{(i)}+\cdots+m_{t}^{(i)} \quad(i=1,2) .
$$

Using this equation together with $n_{i}=\lambda_{j} m_{j}^{(i)}(i=1,2 ; j=1, \cdots, t)$ and comparing the Euler characteristics of F_{i}^{\prime} and \bar{F}^{\prime} we get $n_{1}=n_{2}$ and $m_{j}^{(1)}=m_{j}^{(2)}$.

Now ϕ_{1} and ϕ_{2} are of the same orders and have the same valenznumbers at the fixed points. By the Nielsen equivalence theorem ϕ_{1} and ϕ_{2} are equivalent.

Remark. A "mapping class" is a coset of the group of all homeomorphisms of a surface F modulo the subgroup of isotopic deformations. J. Nielsen [4, p. 24] proves that a mapping class of order n contains a homeomorphism of order n. The above theorem shows that there is exactly one such homeomorphism (up to equivalence).
For let $\phi: F \rightarrow F$ be a homeomorphism of order n and ψ be a homeomorphism of the same class. Then $M=F \times I / \phi \approx F \times I / \psi$. If ψ has finite order, then by the theorem, ψ has order n and is equivalent to ϕ.

References

1. W. Jaco, Surfaces embedded in $M^{2} \times S^{1}$, Canad. J. Math. 22 (1970), 553-568. MR 42 \#2498.
2. L. P. Neuwirth, A topological classification of certain 3-manifolds, Bull. Amer. Math. Soc. 69 (1963), 372-375. MR 26 \#4329.
3. J. Nielsen, Die Struktur periodischer Transformationen von Flächen, Math.-Fys. Medd. Kgl. Danske Vid. Selsk. 1937, 1-75.
4. _-, Abbildungsklassen endlicher Ordnung, Acta Math. 75 (1942), 23-115. MR 7, 137.
5. P. Orlik, E. Vogt and H. Zieschang, Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten, Topology 6 (1967), 49-64. MR 35 \#3696.
6. H. Seifert, Topologie dreidimensionaler gefaserter Raume, Acta Math. 60 (1933), 147-238.
7. J. R. Stallings, On fibering certain 3-manifolds, Topology of 3-Manifolds and Related Topics (Proc. The Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 95-100. MR 28 \#1600.
8. J. L. Tollefson, 3-manifolds fibering over S^{1} with nonunique connected fiber, Proc. Amer. Math. Soc. 21 (1969), 79-80. MR 38 \#5238.
9. F. Waldhausen, Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505-517. MR 38 \#5223.

Department of Mathematics, Florida State University, Tallahassee, Florida 32306

