ON CERTAIN FIBERINGS OF $M^2 \times S^1$

WOLFGANG HEIL¹

ABSTRACT. Using a theorem of Stallings it is shown that the product of S^1 and a surface of genus g > 1 admits for every integer $n \ge 0$ a fibering over S^1 with a surface of genus n(g-1)+g as fiber. Conversely, these are all possible such fibrations (up to equivalence). Let N be a Seifert fiber space which is locally trivial fibered over S^1 with fiber a surface. It is shown that any two such fiberings of N over S^1 are equivalent if the fibers are homeomorphic.

In [8] and [1] it is shown that the 3-manifold $M = F \times S^1$, where F is an orientable closed surface of genus g > 1, admits for every number $n \ge 0$ a fibering over S^1 with a surface T_n of genus n(g-1)+g as fiber. In this note we show that this result follows immediately from Stallings' theorem [7] (this applies also if F is bounded or nonorientable). It is shown that these are all possible fibrations of M over S^1 with fiber a surface and this is generalized to Seifert fiber spaces.

1. Let F be an orientable surface of genus g>1 and m boundary components, let $M=F\times S^1$, $\mathfrak{G}=\pi_1(M)$,

$$\mathfrak{G} = \{a_1, b_1, \cdots, a_g, b_g, s_1, \cdots, s_m, h: s_1 \cdots s_m [a_1, b_1] \cdots [a_g, b_g] = 1, \\ [a_i, h] = [b_i, h] = [s_k, h] = 1 \ (i = 1, \cdots, g; k = 1, \cdots, m) \}.$$

Let Z be represented by the group of integers and construct an epimorphism $\phi: \mathfrak{G} \rightarrow \mathbb{Z}$ as follows

$$\phi(a_1) = 1,$$

$$\phi(a_i) = \phi(b_j) = 0 \qquad (i = 2, \cdots, g; j = 1, \cdots, g),$$

$$\phi(h) = n > 0,$$

$$\phi(s_k) = \gamma_k \qquad (k = 1, \cdots, m).$$

 $(\gamma_k \text{ are arbitrary integers, subject to the condition } \gamma_1 + \cdots + \gamma_m = 0.)$

American Mathematical Society 1972

Received by the editors January 6, 1971 and, in revised form, August 7, 1971.

AMS 1970 subject classifications. Primary 57A10; Secondary 55A10.

Key words and phrases. Fiberings of 3-manifolds over S^1 , Seifert fiber space, Nielsen invariants for surfaces.

¹ The results of this note are contained in the author's Diplom-arbeit, Frankfurt/M, 1967, written under the supervision of Professor H. Zieschang.

(a) If F is closed (i.e. m=0), computing $\mathfrak{N}_n = \ker \phi$ using the Reidemeister-Schreier method, we obtain

$$\mathfrak{M}_{n} = \left\{ a_{i,k}, b_{j,k}, h_{k} : a_{i,k}h_{k}a_{i,k+n}^{-1}h_{k}^{-1} = 1, \ b_{j,k}h_{k}b_{j,k+n}^{-1}h_{k}^{-1} = 1, \\ h_{k+1}h_{k}^{-1} = 1, \ b_{1,k+1}b_{1,k}^{-1}\prod_{l=2}^{q} \left[a_{l,k}, \ b_{l,k} \right] = 1 \\ (i = 2, \cdots, g; j = 1, \cdots, g; -\infty < k < \infty) \right\}.$$

Here $a_{i,k} = a_1^k a_i a_1^{-k}$, $b_{j,k} = a_1^k b_j a_1^{-k}$, $h_k = a_1^k h a_1^{-(k+n)}$. This is equivalent to

$$\mathfrak{M}_{n} = \left\{ h_{0}, b_{1,1}, a_{i,1}, b_{i,1}, \cdots, a_{i,n}, b_{i,n} \colon [h_{0}^{-1}, b_{1,1}] \prod_{j=2}^{g} [a_{j,1}, b_{j,1}] \right.$$
$$\times \prod_{j=2}^{g} [a_{j,2}, b_{j,2}] \cdots \prod_{j=2}^{g} [a_{j,n}, b_{j,n}] = 1 \ (i = 2, \cdots, g) \right\}$$

which is the fundamental group of an orientable closed surface of genus n(g-1)+1. Thus the theorem in the introduction follows by applying Stallings' theorem [7].

(b) If $\partial M \neq \emptyset$ (i.e. m > 0) we obtain, for $\mathfrak{N}_n = \ker \phi$,

$$\mathfrak{N}_{n} = \{a_{i,k}, b_{j,k}, s_{l,k}, ha_{1}^{-n} (i = 2, \cdots, g; j = 1, \cdots, g; k = 0, \cdots, n-1; l = 1, \cdots, m-1)\}$$

$$(where s_{l,k} = a_{1}^{k} s_{l} a_{1}^{\gamma_{l} - k}),$$

a free group of rank n(2g+m-2)+1. By Stallings' theorem M fibers over S^1 with fiber a surface T_n with $\pi_1(T_n) = \Re_n$. M is a (trivial) Seifert fiber space with orbit surface F. T_n is a branched covering of F (see the proposition, §3). Since M has no singular fibers this covering is without branch points. Thus if g' denotes the genus and m' the number of boundary components of T_n and if the covering $T_n \rightarrow F$ is η -sheeted, we have for the Euler characteristics

$$2g' + m' - 2 = \eta(2g + m - 2) = n(2g + m - 2).$$

Thus: For every natural number n there exists a surface T_n which is an *n*-sheeted covering of F and such that M admits a fibering over S^1 with fiber T_n .

(c) The same method carries over to the nonorientable case.

2. The fiberings of §1 are all possible fiberings of M over S^1 with fiber a surface. This can be seen as follows:

Let $\phi: \mathfrak{G} \rightarrow \mathbb{Z}$ be any epimorphism.

Let

.

$$\begin{aligned}
\phi(a_i) &= \alpha_i & (i = 1, \cdots, g), \\
\phi(b_i) &= \beta_i & (i = 1, \cdots, g), \\
\phi(s_k) &= \gamma_k & (k = 1, \cdots, m), \\
\phi(h) &= n.
\end{aligned}$$

Let g.c.d. $(\alpha_1, \beta_1, \dots, \alpha_g, \beta_g) = d$. Since ϕ is an epimorphism, we have g.c.d. $(d, \gamma_1, \dots, \gamma_m, n) = 1$.

The assertion follows from the following:

LEMMA. Let $\phi: \mathfrak{G} \to \mathbb{Z}$ be any epimorphism and let x be any one of the generators $a_1, b_1, \dots, a_g, b_g$. Then there exists an automorphism μ of \mathfrak{G} which is induced by a homeomorphism of M, such that $\phi \cdot \mu(x) = \text{g.c.d.}(d, n)$ and $\phi \cdot \mu(y) = 0$, where $y \in \{a_1, b_1, \dots, a_g, b_g\} - \{x\}$. If F is not a torus, we may assume $\phi(h) > 0$.

PROOF. μ is a composition of the following automorphisms (we write down the generators which are not kept fixed).

$$\begin{split} \mu_1^{(i)}(a_i) &= a_i b_i^k \qquad (k \in \mathbb{Z}) \quad (i = 1, \cdots, g), \\ \mu_2^{(i)}(b_i) &= b_i a_i^l \qquad (l \in \mathbb{Z}) \quad (i = 1, \cdots, g), \\ \mu_3(a_1) &= a_1 a_2 b_2^{-1}, \\ \mu_3(b_1) &= b_2 a_2^{-1} b_1 a_2 b_2^{-1}, \\ \mu_3(a_2) &= b_2 a_2^{-1} b_1 a_2 b_2^{-1} b_1^{-1} a_2 b_2 a_2^{-1} b_1^{-1} a_2 b_2^{-1}, \\ \mu_3(b_2) &= b_2 b_2 a_2^{-1} b_1^{-1} a_2^{-1} b_2^{-1}, \\ \mu_4(a_1) &= a_1 a_2^{-1} b_2^{-1}, \\ \mu_4(b_1) &= b_2 a_2 b_1 a_2^{-1} b_2^{-1} b_1^{-1} a_2^{-1} b_1^{-1} a_2^{-1} b_2^{-1}, \\ \mu_4(b_2) &= b_2 a_2 b_1 a_2^{-1} b_2^{-1} a_1^{-1} b_2^{-1} b_1^{-1} a_2^{-1} b_2^{-1}, \\ \mu_5^{(i)}(a_i) &= a_{i+1}, \\ \mu_5^{(i)}(b_i) &= b_{i+1}, \\ \mu_5^{(i)}(b_{i+1}) &= [a_{i+1}, b_{i+1}]^{-1} a_i [a_{i+1}, b_{i+1}], \\ \mu_5^{(i)}(b_{i+1}) &= [a_{i+1}, b_{i+1}]^{-1} b_i [a_{i+1}, b_{i+1}] \quad (i \text{ taken mod } g), \\ \mu_6(a_1) &= a_1 h^{\pm 1}, \\ \mu_7(h) &= h^{-1}. \end{split}$$

It is not difficult to see that these are automorphisms and furthermore that they are induced by homeomorphisms of M, since they leave the

[July

Let

$$A = \begin{pmatrix} \alpha_1, & \beta_1 \\ \cdot & & \\ \cdot & & \\ \cdot & & \\ \alpha_g, & \beta_g \end{pmatrix}.$$

The automorphisms μ_1 and μ_2 change the map ϕ as follows:

$$\begin{aligned} &(\mu_1) \qquad \phi(a_i) \to \phi(a_i) + k\phi(b_i), \\ &(\mu_2) \qquad \phi(b_i) \to \phi(b_i) + l\phi(a_i). \end{aligned}$$

Using the Euclidean algorithm and (μ_1) , (μ_2) , we transform A into

$$A' = \begin{pmatrix} d_1, & 0 \\ \cdot & \\ \cdot & \\ \cdot & \\ \cdot & \\ d_g, & 0 \end{pmatrix}, \text{ where } d_i = (\alpha_i, \beta_i).$$

Similarly, using μ_3 , μ_4 , μ_5 , μ_6 we change A' into

$$\begin{pmatrix} 0, & g.c.d.(d, n) \\ 0 & 0 \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ 0 & 0 \end{pmatrix}.$$

The last statement of the lemma follows by considering μ_7 and observing that (ker ϕ) $\cap \mathbb{Z}(h)=1$, where $\mathbb{Z}(h)$ is the cyclic subgroup of \mathfrak{G} generated by h (see [5, proof of Satz 7]).

3. A comparison of Nielsen's and Seifert's invariants. In this section we show how for Seifert fiber spaces that are fibered over S^1 the fiber is a branched covering of the Seifert (orbit) surface. This will be used (in the next section) to show the uniqueness of the fibration as mentioned in the introduction.

Let $\phi: F \to F$ be an orientation preserving homeomorphism of finite order *n* of a (compact) orientable surface *F* of genus *g* and *r* boundary components. Let *P* be a fixed point of order λ . The orbitspace of ϕ is a surface *F* and *P* covers a point $\overline{P} \in F$. A simple closed curve *s* in *F* which covers a simple closed curve \overline{s} about \overline{P} , covers it λ times. We have *m*

1972]

disjoint curves lying over \bar{s} , where $n = \lambda \cdot m$. Choose an orientation on F.

Let \overline{Q} be any point on \overline{s} . Q is covered by λ points on s lying over \overline{Q} . The (oriented) arc on s which starts at Q and covers \overline{s} once ends at a certain point $\phi^{\sigma m}Q$. Note that g.c.d. $(\sigma, \lambda)=1$. The *valenz* of P is defined to be the triple (m, λ, σ) . A multiple point is one for which $\lambda > 0$.

THEOREM (NIELSEN [3]). Let F, F' be homeomorphic closed surfaces, let $\phi: F \rightarrow F$ and $\phi': F' \rightarrow F'$ be homeomorphisms of finite order n. Then ϕ and ϕ' are equivalent (i.e. there exists a homeomorphism $\psi: F \rightarrow F'$ such that $\phi \psi = \psi \phi'$) iff F and F' have the same valenz-numbers at multiple points.

For a description of the Seifert invariants (μ, ν) of a fibered solid torus and a 3-manifold, see [6].

Let *M* be a Seifert fiber space which admits a fibering over S^1 with fiber a surface *F* of genus >1. Thus *M* can be obtained from $F \times I$ (where *I* denotes the unit interval [0, 1]) by identifying $F \times 0$ with $\phi F \times 1$, where $\phi: F \rightarrow F$ is a homeomorphism and we write $M = F \times I/\phi$. It is easy to see that *M* is a Seifert fiber space iff $\pi_1(M)$ has nontrivial center and $\pi_1(M)$ has nontrivial center iff ϕ is isotopic to a homeomorphism ϕ' of finite order (see e.g. [9, p. 514]). Since ϕ and ϕ' determine homeomorphic 3-manifolds [2], we may assume that ϕ has finite order *n*. We construct a Seifert fibration of *M* as follows: Let *P* in *F* be a fixed point of order $\lambda > 1$. Then *P*, $\phi P, \dots, \phi^{m-1}(P)$ (where $\lambda m = n$) cover the same point \overline{P} in the orbit surface \overline{F} . Now $F \times I$ has a trivial fibering as a line bundle. Take a neighborhood U(P) of *P* which does not contain any other multiple point and such that $\phi^m(U(P)) = U(P)$. Then we have neighborhoods

$$U(P) \times I, \, \phi U(P) \times I, \, \cdots, \, \phi^{m-1}U(P) \times I \qquad (\phi^m U(P) = U(P))$$

of $P \times I$, $\phi P \times I$, \cdots , $\phi^{m-1}(P) \times I$ in $F \times I$ and they match together to form a fibered solid torus in M. The fiber in M which contains P is composed of m lines $P \times I$, \cdots , $\phi^{m-1}(P) \times I$ and the fiber through any point Q of U(P) $(Q \neq P)$ is composed of n lines $Q \times I$, \cdots , $\phi^{n-1}(Q) \times I$. Hence the fibers through U(P) form a fibered neighborhood of an exceptional fiber of order $n/m = \lambda$.

Note that the orbit surface \overline{F} is the Seifert surface of the Seifert fibration.

Let $\overline{P} \in \overline{F}$ be a multiple point of order λ , \overline{s} a small simple closed curve around \overline{P} , $\overline{Q} \in \overline{s}$ an arbitrary point and s in F a closed curve which covers \overline{s} . On s there are exactly λ points which cover \overline{Q} :

$$Q, \phi^{\sigma m} Q, \cdots, \phi^{(\lambda-1)\sigma m} Q$$
 (exponents mod *n*),

where σ is the valenz. To find $\phi^m Q$ in this sequence, we have to find an integer δ such that $\delta \sigma \equiv 1$ (λ). Now s is mapped onto itself for the first time by ϕ^m and ϕ^m is equivalent to a rotation of $2\pi\delta/\lambda$ of a circle. Hence the

Seifert invariants μ , ν of M and the valenz (m, λ, σ) of the map $\phi: F \rightarrow F$ satisfy

$$\sigma \equiv \nu \pmod{\mu}$$
, where $\delta \sigma \equiv 1 \pmod{\lambda}$,
 $\lambda = \mu$.

Now if M_1 and M_2 are homeomorphic Seifert fiber spaces, then the corresponding Seifert surfaces are homeomorphic and M_1 and M_2 have the same numbers μ , ν by the classification theorem of Seifert fiber spaces [5].

Hence we have the following:

PROPOSITION. If $M_1 = F_1 \times I/\phi_1$ and $M_2 = F_2 \times I/\phi_2$ are homeomorphic and ϕ_i is a homeomorphism of order n_i (i=1, 2), then F_1 and F_2 are (branched) coverings of the same orbit surface (=Seifert surface) F with the same number t of branch points (on F) which are of the same orders λ .

4. Equivalent Stallings fibrations. Two fiberings (M_1, p_1, S^1, F_1) and (M_2, p_2, S^1, F_2) are equivalent iff there exists a homeomorphism $\psi: M_1 \rightarrow M_2$ with $\psi p_2 = p_1$. Let F_i be a closed orientable surface of genus $g_i > 1$ (i = 1, 2) and let $\phi_i: F_i \rightarrow F_i$ be a homeomorphism of finite order n_i .

THEOREM. Let $M_i = F_i \times I/\phi_i$ (i=1, 2). Assume F_1 and F_2 are homeomorphic. Then the following are equivalent:

- (a) M_1 is homeomorphic to M_2 .
- (b) M_1 is equivalent to M_2 .
- (c) ϕ_1 is equivalent to ϕ_2 (and is of the same order).

In particular, it follows that if M is a closed Seifert fiber space which admits two fibrations over S^1 with fibers F_1 and F_2 , then either F_1 is not homeomorphic to F_2 or the two fibrations are equivalent.

PROOF. If ϕ_1 and ϕ_2 are equivalent then it is not hard to see that M_1 and M_2 are equivalent (see e.g. [2]). Thus $(c) \rightarrow (b) \rightarrow (a)$. We show $(a) \rightarrow (c)$: Let M_1 be homeomorphic to M_2 . M_1 and M_2 are Seifert fiber spaces and have the same Seifert surface \overline{F} . If t_i denotes the number of branch points $(on \overline{F})$ of the orbit surfaces of ϕ_i (i=1, 2) and $\lambda_j^{(i)}$ the orders of the branch points $(i=1, 2; j=1, \dots, t_i)$ we have (by the proposition) $t_1=t_2=t$ and $\lambda_j^{(1)}=\lambda_j^{(2)}=\lambda_j$ $(j=1,\dots,t)$. Consider the branched covering $F_i\rightarrow\overline{F}$ (i=1, 2) and cut out a small disc D_j in \overline{F} containing a branch point of order $\lambda_j^{(i)}$ and remove the $m_j^{(i)}$ discs in F_i which cover D_j (where $n_i=$ $\lambda_j^{(i)}m_j^{(i)}$). Do this for all branch points \overline{P}_j $(j=1,\dots,t)$ and get an unbranched covering $F'_i\rightarrow\overline{F'}$. Clearly, if r_i denotes the number of boundary components of F'_i , we have

$$r_i = m_1^{(i)} + \cdots + m_t^{(i)}$$
 $(i = 1, 2).$

1972]

Using this equation together with $n_i = \lambda_j m_j^{(i)}$ $(i=1, 2; j=1, \dots, t)$ and comparing the Euler characteristics of F'_i and $\overline{F'}$ we get $n_1 = n_2$ and $m_i^{(1)} = m_i^{(2)}$.

Now ϕ_1 and ϕ_2 are of the same orders and have the same valenznumbers at the fixed points. By the Nielsen equivalence theorem ϕ_1 and ϕ_2 are equivalent.

REMARK. A "mapping class" is a coset of the group of all homeomorphisms of a surface F modulo the subgroup of isotopic deformations. J. Nielsen [4, p. 24] proves that a mapping class of order n contains a homeomorphism of order n. The above theorem shows that there is exactly one such homeomorphism (up to equivalence).

For let $\phi: F \to F$ be a homeomorphism of order *n* and ψ be a homeomorphism of the same class. Then $M = F \times I/\phi \approx F \times I/\psi$. If ψ has finite order, then by the theorem, ψ has order *n* and is equivalent to ϕ .

References

1. W. Jaco, Surfaces embedded in $M^2 \times S^1$, Canad. J. Math. **22** (1970), 553-568. MR **42** #2498.

2. L. P. Neuwirth, A topological classification of certain 3-manifolds, Bull. Amer. Math. Soc. 69 (1963), 372-375. MR 26 #4329.

3. J. Nielsen, Die Struktur periodischer Transformationen von Flächen, Math.-Fys. Medd. Kgl. Danske Vid. Selsk. 1937, 1-75.

4. — , Abbildungsklassen endlicher Ordnung, Acta Math. 75 (1942), 23-115. MR 7, 137.

5. P. Orlik, E. Vogt and H. Zieschang, Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten, Topology 6 (1967), 49-64. MR 35 #3696.

6. H. Seifert, Topologie dreidimensionaler gefaserter Raume, Acta Math. 60 (1933), 147-238.

7. J. R. Stallings, *On fibering certain 3-manifolds*, Topology of 3-Manifolds and Related Topics (Proc. The Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 95–100. MR 28 #1600.

8. J. L. Tollefson, 3-manifolds fibering over S^1 with nonunique connected fiber, Proc. Amer. Math. Soc. **21** (1969), 79-80. MR **38** #5238.

9. F. Waldhausen, Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505-517. MR 38 #5223.

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306

286