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EMBEDDING NUCLEAR SPACES IN PRODUCTS

OF AN ARBITRARY BANACH SPACE

STEPHEN  A.  SAXON

Abstract. It is proved that if E is an arbitrary nuclear space

and F is an arbitrary infinite-dimensional Banach space, then there

exists a fundamental (basic) system V of balanced, convex neigh-

borhoods of zero for E such that, for each Kin i*~, the normed space

Ev is isomorphic to a subspace of F. The result for F=lv (1 ̂ />^oo)

was proved by A. Grothendieck.

This paper is an outgrowth of an interest in varieties of topological

vector spaces [2] stimulated by J. Diestel and S. Morris, and is in response

to their most helpful discussions and questions. The main theorem, valid

for arbitrary infinite-dimensional Banach spaces, was first proved by

A. Grothendieck [3] (also, see [5, p. 101]) for the Banach spaces /„

(1 ̂ p^ co) and later by J. Diestel for the Banach space c0.

Our demonstration relies on two profound results of T. Kömura and

Y. Kömura [4] and C. Bessaga and A. Pelczyriski [1], respectively:

(i) A locally convex space is nuclear if and only if it is isomorphic to a

subspace of a product space (s)1, where / is an indexing set and (s) is the

Fréchet space of all rapidly decreasing sequences.

(ii) Every infinite-dimensional Banach space contains a closed infinite-

dimensional subspace which has a Schauder basis.1

Recall that for a balanced, convex neighborhood V of zero in a locally

convex space E, Ev is a normed space which is norm-isomorphic to

(M,p\M), where/? is the gauge of V and M is a maximal linear subspace

of £ on which/; is a norm; Ev is the completion of Ev. Denote by (s) the

nuclear Fréchet space of rapidly decreasing sequences, so that

(s) = j(A):sup \nkXn\ < co, k = 1, 2, • • •),
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1 This result was stated without proof in Banach's book (1932).
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with the system of seminorms

{/>*((*»)) = SUP I M «I : * — 1,2, - - -}.

Lemma 1. Le/ F ¿>e a« arbitrary infinite-dimensional Banach space with

a Schauder basis, and let U be a neighborhood of zero in (s). There exists a

balanced, convex neighborhood of zero Vc fj such that (s)v is norm-

isomorphic to F.

Proof. Let {xn} be a Schauder basis for F with coefficient functionals

{/Jcf, and with ||x„|| = l («=1, 2, • • •). By the uniform boundedness

theorem, the (absolute) polar {fn}° of {/„} is a neighborhood of zero,

and its gauge/) is thus a continuous seminorm. Therefore A|| 2ñ=i o„x„\\ =

/>(2n=ißn*n)=sup„ \an\ for each y^=xanx„eF, where K is some positive

constant. For some e>0 and positive integer k,

V = {xe(s):Pk(x) <: e} <= U.

Define a norm q on (s) so that, for each (Xn)e(s),

(CO \ /     CO \ CO

2 n'lPUßn)) = K(2 T2 sup \nk+2U ^ K 2 \»X\
n=l        ' ^ 7i=l '    n n=l

CO II     00

(*) = k2 \\»%xj ^ K   2n^»x»
n=l II n=l

= «((;w)^p(Sn%x.) =ft((4)).
vn=i     /

Therefore  V={xe(s):q(x)^e}cV'<=U is a neighborhood of zero, and

(s)v is norm-isomorphic to ((s), q), which is clearly norm-isomorphic to

a dense subspace of F by (*).

Remark.    It is clear from the proof that the map

(CO \    CO

n-l /*=1

embeds (i) in the product space FxFxFx ■ ■ ■ , and thus by (i) and (ii),

each nuclear space can be embedded in some product of any given infinite-

dimensional Banach space.

Lemma 2.    The space (s) is isomorphic to (s) x (s).

Proof.   The  map  (An)-»-((A2n_1),   (X2n))  is  a  linear,  bicontinuous

bijection from (s) onto (s) x (s).
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Theorem. Let E be an arbitrary nuclear space and F an arbitrary

infinite-dimensional Banach space. Each neighborhood U of zero in E

contains a balanced, convex neighborhood V of zero such that Ev is norm-

isomorphic to a subspace of F.

Proof. Let / be any indexing set, and U a neighborhood of zero in

the product space E=(s)x. Thus there exists a finite subset A of/such that

U~=> Wx (s)B, where B=Ir*~>A and IF is a neighborhood of zero in (s)A.

By (ii) there exists a closed infinite-dimensional subspace F0 of F which

has a Schauder basis, and by Lemmas 1 and 2, there is a balanced, convex

neighborhood of zero V<=- W such that the completion of ((s)A)v is

norm-isomorphic to F0. Now V'=Vx(s)B is a neighborhood of zero

contained in U such that Ey is norm-isomorphic to ((s)A)v and the

conclusion of the theorem holds for £=(j)/. But then the conclusion

clearly holds for any subspace of (s)1, and hence for any nuclear space E,

by (i).

Corollary. The variety ([2], [2a]) generated by any infinite-dimen-

sional Banach space contains the variety of all nuclear spaces.

The author thanks Professor Pelczyñski for the privilege and benefit

of discussing this material with him.
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