A NOTE ON MODEL COMPLETE MODELS AND GENERIC MODELS¹

SAHARON SHELAH

ABSTRACT. We prove that there are many maximum model complete (= generic) models, and that there exists an (uncountable) theory with no generic models.

After Barwise and Robinson [1] we say a model M, of a (first-order) theory T, completes T if every extension of M, which is a model of T, is an elementary extension of M. (By [1, Theorem 3.4, p. 129], M completes T^f iff it is T-generic.) It is known

LEMMA 1. If M completes T and N is an elementary submodel of M, then N also completes T (it follows from Theorem 1.2).

For a cardinal λ let $Mc(\lambda)$ be the least cardinal κ , such that for all T of power $\leq \lambda$, if T is completed by some model of power κ , then for all $\mu \geq \lambda$ there is a model which completes T and whose power is $\geq \mu$.

THEOREM 2. $Mc(\lambda) = \mu_{\lambda}$ (=the Hanf number of omitting a type).

REMARK. For the values of μ_{λ} see, e.g., Chang [2, §2, p. 47]; he denotes μ_{λ} by m_{λ} .

Theorem 3. For arbitrarily large cardinals κ smaller than the first measurable cardinal there exists a complete and countable T and a model M of power κ which complete T, and no proper extension of M completes T.

Answering Question 8.1 of [1] we prove in §2:

THEOREM 4. There is an uncountable theory T with no T-generic model.

(This was also proved, independently, by P. Henrard, and later by Macintyre.) Only in §2 knowledge of [1] is assumed.

NOTATION. |M| is the universe of the model M. |A| is the cardinality of the set A (so |L| is the number of formulas of L). ||M|| is the cardinality of (the universe of) M. Infinite cardinals are denoted by λ , μ , κ .

Received by the editors May 25, 1971 and, in revised form, November 5, 1971. AMS 1970 subject classifications. Primary 02H05.

Key words and phrases. Generic models, model complete, omitting types, maximal models.

¹ The preparation of this paper was sponsored in part by NSF Grants GP-22937 and GP-27964.

- 1. THEOREM 1.1.² Let T be a theory, p a type in a language L, and M an infinite model of T which omits p. Then there are a language L_1 , a theory T_1 and a type p_1 in L_1 and a model M_1 of T_1 which omits p_1 such that:
 - (a) $|L_1| \leq |L| + \aleph_0$, T_1 is complete.
 - (b) M_1 completes T_1 , it omits p_1 and $||M_1|| = ||M||$.
 - (c) A model of T_1 completes T_1 iff it omits p_1 .
- (d) If every extension of M which is a model of T realizes p then no extension of M_1 completes T_1 .
- (e) If T has no model of cardinality λ which omits p then there is no model which completes T_1 in cardinality λ .

PROOF. Without loss of generality assume in L there are no function symbols. Let $p = \{\phi_i(x): i < |p|\}$. Let us choose infinite disjoint subsets of |M|, A_i , i < |p|, such that $|M| = \bigcup A_i$.

We expand M to a model M^1 by adding the following relations:

- (1) $P_i^{M^1} = A_i$ for every i < |p| (i.e., $P_i^{M^1}$ is a one-place relation, and P_i the corresponding predicate).
- (2) A relation R^{M^1} such that $\langle a, b \rangle \in R^{M^1}$ iff there is $i < |p|, b \in P_i^{M^1}$, $M \models \neg \phi_i(a)$ and for every $j < i, M \models \phi_i[a]$.
- (3) An equivalence relation $E_1^{M^1}$ such that: $aE_1^{M^1}b$ iff for some $i, a, b \in P_1^{M^1}$.

Now let us define a model M^2 . Its set of elements is

$$|M^2| = \{ \langle a, \alpha \rangle : a \in |M^1|, \alpha \leq \omega \}.$$

Its relations and functions are:

(4) An equivalence relation E_2^{M2} such that:

$$\langle a, \alpha \rangle E_n^{M^2} \langle b, \beta \rangle$$
 iff $a = b$.

(5) For every *n*-place relation Q^{M^1} let

$$Q^{M^2} = \{ \langle \langle a_1, \alpha_1 \rangle, \cdots, \langle a_n, \alpha_n \rangle \rangle : \langle a_1, \cdots, a_n \rangle \in Q^{M^1}; \alpha_1, \cdots, \alpha_n \leq \omega \}.$$

- (6) An equivalence relation $E_3^{M^2}$ such that $\langle a, \alpha \rangle E_3^{M^2} \langle b, \beta \rangle$ iff
 - (a) a = b,
 - (b) $\alpha = \beta$ or $\alpha = 2n+1$, $\beta = 2n$ or $\alpha = 2n$, $\beta = 2n+1$.
- (7) For every i < |p| a function $F_i^{M^2}(x, y)$ such that for every $a, b \in |M^2|$:
 - (a) if $M^2 \models \neg aE_2b \lor \neg P_i(a)$ then $F_i^{M^2}(a, b) = a$,
 - (b) if $M^2 \models aE_2b \land P_i(a)$ then $M^2 \models P_i(F_i(a, b))$,
 - (c) if $M^2 \models aE_2b \land aE_2c \land P_i(a) \land b \neq c$ then $M^2 \models \neg E_2(F_i(a, b), F_i(a, c))$.

² ADDED IN PROOF (MAY 11, 1972). In Theorem 1.1 if p is countable, we can define M_1 so that $M \equiv N$ implies $M_1 \equiv N_1$. This may help to improve Theorem 3.

Now we define the M_1 we wanted as an expansion of M^2 by:

(8) For every $n < \omega$, $i_1, \dots, i_n < |p|$ (not necessarily distinct) and formula $\phi(x_1, \dots, x_n)$ of the language of M^2 , we add the relation $R^{M_1}_{\phi, i_1, \dots, i_n}$ defined by

$$R_{\phi_{i,i},\dots,i_n}^{M_1} = \{ \langle a_1,\dots,a_n \rangle : M^2 \models [P_{i_1}(a_1) \wedge \dots \wedge P_{i_n}(a_n) \wedge \phi(a_1,\dots,a_n)] \}.$$

Now let T_1 be the theory of M_1 , L_1 its language, and $p_1 = \{ \neg P_i(x) : i < |p| \}$. Let us now prove that:

(*) A model of T_1 completes T_1 iff it omits p_1 .

By (8) it is clear that every model of T_1 which omits p_1 completes T_1 . Suppose now N is a model of T_1 which realizes p_1 , and let $a \in |N|$ realize p_1 . As N is a model of T_1 , by (4) and (6), there are distinct elements c, b_n , $0 \le n < \omega$, such that:

$$N \models b_{2n}E_3b_{2n+1}, \qquad N \models (\forall x)(xE_3c \rightarrow x = c),$$

 $N \models aE_2b_n \text{ and } N \models aE_2c \text{ (for every } n).$

We now define now a submodel N_1 of N, whose set of elements is $|N_1| = |N| - \{c, b_0\}$. Now N_1 is not an elementary submodel of N because

$$N_1 \models (\forall x)(xE_3b_1 \rightarrow x = b_1), \qquad N \models (\exists x)(xE_3b_1 \land x \neq b_1).$$

On the other hand N, N_1 are isomorphic: define F by:

$$F(c) = b_1 F(b_n) = b_{n+2} \quad \text{(for } 0 \le n < \omega)$$

and

$$F(a^1) = a^1$$
 for $a^1 \in N - \{c_1b_1, b_2 \cdots\}$.

Clearly, F is an isomorphism from N onto N_1 .

So N, N_1 are models of T, N_1 does not complete T, hence also N does not complete T. So we proved (*).

Now (a) is immediate; (b) follows from the definition of $|M^2| = |M_1|$ and (*); (c) is (*); (d) is clear from (*) and (2); and for (e) we should notice also (7) (which implies that if N is a model of T_1 , which omits p_1 , then ||N|| is equal to the number of E_2^N -equivalence classes in |N|). So we prove the theorem.

The following theorem was already known to Robinson:

THEOREM 1.2. For every theory T there is a set P of types (not all 1-types necessarily) such that: any model M completes T if and only if M is a model of T omitting every type $p \in P$, and $|P| \leq |T| + \aleph_0$.

PROOF. Let M be a model, and $|M| = \{a_i | i < \alpha\}$ and Diag M be the set of sentences $\phi(a_i, \dots, a_n)$ which are satisfied by M where ϕ is a basic formula (=an atomic or negation of an atomic formula). Clearly,

M completes T if and only if $T \cup \text{Diag } M$ is a complete theory. By the compactness theorem, this implies: M completes T if and only if: for every formula $\phi(x_1, \dots, x_m)$ and elements $b_0^1, \dots, b_m^0 \in |M|$, there are $\phi_1(b_1^1, b_2^1, \dots), \dots, \phi_n(b_1^n, b_2^n, \dots)$ in Diag M such that

$$T \cup \{\phi(b_1, \dots), \dots, \phi_n(b_1, \dots)\} \vdash \phi(b_1, \dots, b_n)$$

or, equivalently,

$$T \vdash (\forall \cdots x_j^i \cdots) \left[\bigwedge_i \phi_i(x_1^i \cdots) \rightarrow \phi(x_1^0, \cdots) \right]$$

(we should identify the variables x_k^i , x_e^k if $a_i^k = a_e^k$). For every formula $\phi = \phi(x_1, \dots, x_n)$ let Γ_{ϕ} be the set of formulas $\theta(x_1, \dots, x_n, \dots, x_m)$ which are conjunctions of basic formulas and

$$T \vdash (\forall x_1, \dots, x_m) [\theta(x_1, \dots, x_m) \rightarrow \phi(x_1, \dots, x_n)].$$

Let $p_{\phi} = \{\neg(\exists x_{n+1}, \cdots, x_m)\theta(x_1, \cdots, x_n, \cdots, x_m): \theta \in \Gamma_{\phi}\}$. Clearly, M completes T if and only if for every ϕ , T omits p_{ϕ} . So $P = \{p_{\phi} | \phi \text{ a formula}\}$ satisfies the condition of the theorem.

PROOF OF THEOREM 2. By the definitions of $Mc(\lambda)$, μ_{λ} , clearly Theorem 1.1 implies $Mc(\lambda) \geqq \mu_{\lambda}$. Suppose that M completes T, $\|M\| \geqq \mu_{\lambda}$, $\lambda \geqq |T|$. So by 1.2, M is a model of T and omits every $p \in P$. By, e.g., Chang [2, p. 47, (D)], the Hanf number for a sentence in $L_{\lambda^{+},\omega}$ is μ_{λ} , and clearly being a model of T omitting every $p \in P$ can be expressed in $L_{\lambda^{+},\omega}$. So T has arbitrarily large models omitting every $p \in P$, hence by 1.2 arbitarily large models completing T. This means $Mc(\lambda) \leqq \mu_{\lambda}$. So $Mc(\lambda) = \mu_{\lambda}$.

PROOF OF THEOREM 3. This can be proved using 1.1 and the following (see Malitz and Reinhart [4, Theorem XX]).

THEOREM. For arbitrarily large cardinals λ smaller than the first measurable cardinal, there is a model M_{λ} , $\|M_{\lambda}\| = \lambda$, with countable type and with a one place relation P, $P^{M_{\lambda}} = \{c_n | c_n < \omega\}$, such that: for no proper extension N of M_{λ} which is elementarily equivalent to M_{λ} , $P^N = P^{M_{\lambda}}$.

(For characterization of those λ which satisfy this, see [4].)

2. Let N be the standard model of natural numbers with addition, multiplication and individual constant m for each natural number m. Let T=Th(N), and the language be L^* . Let $K=T\cup\{c_i\neq c_j:i< j<\aleph_1\}$, and its language L, $K_1=T\cup\{c_i\neq c_j:i< j<\omega\}$ and its language L_1 .

THEOREM 2.1. There is no K-generic model.

PROOF. It is easy to check that $P(c_1, \dots, c_m, a_1, \dots, a_m)$ for both K and K_1 is a forcing condition iff

$$(\exists x_1 \cdots)(\exists y_1 \cdots) \left[P(x_1, \cdots, y_1, \cdots) \land \bigwedge_{i \neq j} x_i \neq x_j \right] \in T$$

$$(a_1, \cdots, -\text{new constants}).$$

Let Γ be the set of formulas $\phi(x_1, \dots, x_n)$ in L^* such that for any distinct natural numbers $m_1, \dots, m_n N \models \phi[m_1, \dots, m_n]$.

We shall prove now

(*)
$$K_1^f = T \cup \{ \psi(c_{i1}, \cdots, c_{i_n}) : i_1, \cdots, i_n \text{ are distinct,}$$
 and $<\omega, \psi(x_1, \cdots, x_n) \in \Gamma \}.$

Construction. Let A be a countable set of new individual constants, let P be a forcing condition. We shall show that there is a K_1 -generic model, which is a model of $K_1^f(P) = \{\phi \in L(A): P \Vdash *\phi\}$ and whose reduct to L^* is N. Let $\{\phi_i: i < \omega\}$ be the set of sentences of L(A), $A = \{a_n: n < \omega\}$. We define by induction P_n :

- (1) $P_0 = P$.
- (2) If P_{3n} is defined, then there is a $Q \supset P_{3n}$, such that $Q \Vdash \phi_n$ or $Q \Vdash \neg \phi_n$. Let $P_{3n+1} = Q$.
- (3) If P_{3n+1} is defined it is easy to see that there is a natural number m such that $P_{3n+1} \cup \{c_n = m\}$ is a forcing condition. Let $P_{3n+2} = P_{3n+1} \cup \{c_n = m\}$.
- (4) If P_{3n+2} is defined, we can similarly find $P_{3n+3} \supset P_{3n+2}$ such that for some m, $a_n = m \in P_{3n+3}$.

As in [1, Theorem 3.3] we get a generic model N(P) which satisfies all our conditions.

Now let us prove (*)

- (a) If $\psi \in T$, and not $\varnothing \Vdash^* \psi$ then for some P, $P \Vdash \neg \psi$, so $N(P) \models \neg \psi$. As $\psi \in L^*$, and N is the reduct of N(P) to L^* , $N \models \neg \psi$, contradiction so $T \subset K_1^f$, and as T is complete $K_1^f \cap L^* = T$.
- (b) If $\phi(x_1, \dots, x_n) \in \Gamma$ and not $\emptyset \Vdash^* \phi(c_{i_1}, \dots, c_{i_n})$ (i_1, \dots, i_n) are distinct then for some $P, P \Vdash \neg \phi(c_{i_1}, \dots, c_{i_n})$ so $N(p) \models \neg \phi(c_{i_1}, \dots, c_{i_n})$, contradiction to the definition of Γ .
- (c) Suppose $\phi(c_{i_1}, \dots, c_{i_n}) \in K_1^f(i_1, \dots, i_n)$ are distinct) (otherwise, we can write ϕ is a different way). So for every distinct natural number m_1, \dots, m_n , $P = \{c_{i_1} = m_1, \dots, c_{i_n} = m_n\}$ is a forcing condition. So as $\emptyset \Vdash \phi(c_{i_1}, \dots, c_{i_n})$, also $P \Vdash \phi(c_{i_1}, \dots, c_{i_n})$ so $N(P) \models \phi(m_1, \dots, m_n)$. So $\phi(x_1, \dots, x_n) \in \Gamma$.

So we prove (*). By [1, Theorem 6.1] (and here it can be seen directly)

$$K^f = T \cup \{\psi(c_{i_1}, \cdots, c_{i_n}): i_1, \cdots, i_n < \aleph_1 \text{ are distinct,} \}$$

and
$$\psi(x_1, \dots, x_n) \in \Gamma$$
};

clearly, by the definition of Γ , for $i \neq j$, $c_i \neq c_j \in K^f$. So let M be a K-generic model. So it is a model of K^f [1, Definitions 3.1, 3.2] so $||M|| \geq |\{c_i: i < \aleph_1\}| = \aleph_1 > \aleph_0$. Also M is model complete for K^f hence for K^f (by the definition of Γ). This contradicts Rabin [3], that any nonstandard model of T has an extension which is a model of T but not an elementary extension of M.

REFERENCES

- 1. J. Barwise and A. Robinson, Completing theories by forcing, Ann. Math. Logic 2 (1970), 119-142.
- 2. C. C. Chang, Some remarks on model theory of infinitary languages, The Syntax and Semantics of Infinitary Languages, Lecture Notes in Math., no. 72, Springer-Verlag, Berlin and New York, 1968, pp. 36-64.
- 3. M. O. Rabin, Diophantine equations and non-standard models of arithmetic, Proc. Internat. Congress Logic, Methodology and Philosophy of Science (1960), Stanford Univ. Press, Stanford, Calif., 1962, pp. 151-158. MR 27 #3540.
- 4. J. I. Malitz and W. N. Reinhardt, Maximal models in the language with quantifier "there exist uncountably many", Pacific J. Math. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024

Current address: Institute of Mathematics, Hebrew University, Jerusalem, Israel