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ON THE ACCUMULATION  OF THE  ZEROS  OF A
BLASCHKE PRODUCT AT A BOUNDARY  POINT

DAVID   PROTAS

Abstract. Let 5 be a Blaschke product with zeros {a„}. The

series '2l(l—\an\2)l\l — lan\y, where y — \ and |£| = 1, has been

used by P. R. Ahem, D. N. Clark, G. T. Cargo, and others in the

study of the boundary behavior of B and various associated

functions. In this paper the convergence of this series is shown to be

equivalent to a condition on a reproducing kernel for a subspace

of the Hardy space H2. Some related conditions and corollaries

are also given.

1. Introduction.   Let U denote the unit disc in the complex plane. For

0<K|<1 and 2 (l-|aJ)<oo, put

dn   a-n - z

n=X Kl 1 -  ¿«Z

B is holomorphic in U and is called a Blaschke product. If y_l and if £

is any point on the boundary, dU, of U, we can associate with the sequence

{an}, the series

(i) 2 (i - Ki2w - for-
71 = 1

In [1] and [3], Ahern and Clark study properties necessary and sufficient

for the convergence of (1) for integer values of y. For general y, Cargo [4]

has given a necessary condition for the convergence of (1) in terms of the

existence of certain tangential limits for B and all its subproducts. This

condition is shown by Linden and Somadasa in [7] to be not sufficient.

A related condition, which is also necessary but not sufficient, can be

found in [8]. In §3 of this paper, we give, for any y^l, a necessary and

sufficient condition for the convergence of (1). We also give the corre-

sponding result for general inner functions.
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In §4, a corollary is given which is motivated by some work on the

segmental variation of Blaschke products by Cargo [5]. Also, we present

another necessary and sufficient condition for the convergence of (1) when

y is an integer. §5 is devoted to an application, observed by Professor

D. N. Clark, of the results of §3.

2. Preliminaries. For each £ e d£/, each y 2:1, and each w>0, let

r=rc,y.M be the "curve" in U given by T(6) = (l-m \d\7)eie for O<|0|<

min{77, m~1/:'}. T encloses the region R(m, £, y) which was introduced by

Cargo in his study of tangential limits [4].

Let H2 denote the usual Hardy class of functions holomorphic in U.

A well-known theorem of Beurling states that any closed invariant sub-

space of H2 is of the form <pH2, where <f> is an inner function. That is,

</> is a bounded holomorphic function in U whose radial limits are of

modulus one at almost all points of dU. If </> is an inner function, then

<f> = MBs where M is a monomial, S is a Blaschke product with zeros

{a„} (anj^0), and í is a singular inner function. By this we mean

s(z) = expj- \~\eu + z)l(eu - z) do(t)^,

where o is a finite nonnegative singular measure. The function s, in turn,

can be factored into the product of two singular inner functions, sc and sa,

corresponding to, respectively, a continuous measure ac and a purely

atomic measure rra with ff=o'c-|-o'(1. For a general discussion of the above

see, for example, [9].

For any inner function <p, we let (fiH2)1 be the orthogonal complement

of <pH2 in H2. For each zeU, define the function Kz=Kf in U by

K,(X) = (1 - WWWW - «).

It is observed in [1] and [2] that Kz e (¿H2)1 and that (/, Kz)=f(z) for

each/E ((¡>H2)L. In particular, we have

IIAT.I« = Kz(z) = (1 - \<p(z)\2)\(l - \z\2),

where ||AJ stands for the H2 norm of Kz.

3. The main result.    We begin with the case of a Blaschke product.

Theorem 1. Let B be a Blaschke product with zeros {a„}, and choose any

£ e dU, 7>j 1, and m>0. Then (1) converges if and only if

(2) f       \\Kz\\2\dz\< co.
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Proof.   In [1], it is shown that

||KJ2 = 2 Iß,(z)|2(l - K|2)/|l - «„z|2,
n

where Bn is the subproduct of B with zeros au • • • , an_x. The theorem is

then obvious for any finite Blaschke product, and so we shall concern

ourselves only with the case in which B is an infinite Blaschke product.

Also, we see by replacing B with the Blaschke product with zeros {£an}

that we can assume that £=1 without any loss in generality.

Now, let us assume that (1) converges. This implies, since £"=1, that

an can be real and positive for at most finitely many zz. So, we can assume

that arg an is never zero, where by arg an we mean the value of the argu-

ment of an which is in the interval ( — it, tt]. Then, it is shown in [4] that

the convergence of (1) implies that

(3) 2il-\an\)l\^gan\y
n=l

converges.

Let c=min{77, m~lly}. We have, for r = rii?m,

fVn.>lr,<Wá22(1-lfl«l)fí1- änmr2de.
Jo „ Jo

Set /n=arg an. By the law of cosines,

|1 - anTid)\2 = (1 - \anTid)\)2 + 4 |a„r(0)| sin* *(0 - tn)

= (1 - |r(0)|)* + hid - tn)2

= m2 |0p + «0 - tn)2

for 0 close to 0 and any n such that tn is close to 0 and |öj>-i. So, there

is a constant c' such that if /„ is small and positive,

J"Je

dd
-H-«JW

< p"-'"/2   2 de      p"+<"/2 de      p'

Jo      (0 - í„)2   Jv-fî/i m2e2y   Jin+tin2(6-tn)2

= 4C - 2t-1 + [(<„ - tlßf'2-' - itn + tH2f-2?]H2y - l)m2

+ 4C - 2/(c' - i„)

= Oil/tl)       (in->0),

where the estimate on [(/„—ÍJJ2)1-2'''—(i„+/^/2)1_2;'] can be made by

using its binomial expansion. If /„ is close to 0 and negative, we note that

|l-fl,,r(fl)|<|l-fl„r(0)| for 0>O and apply the above to |l-a„r(0)|.
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It then follows from the convergence of (3) that $c0 ||Ar(e)||2 i/0<oo. The

finiteness of the integral over the interval (—c, 0) is derived analogously.

Then (2) follows since |T'(0)| is bounded for —c<d<c.

Now for the converse, assume that (2) holds. It is easily seen that

00

b'(z) = 2 urn - Ki2)/(i - änzf,
n=l

whSreBn(z)=B(z)(l-änz)l(z-an).Thcn,\\Kz\\2z%\B(z)\-\B'(z)\ = ^\D'(z)\,

where D=B2. So, (2) implies that Jr \D'(z)\ \dz\<ao. Thus, the Blaschke

product D has a limit as z—>-l along F. Also, (2) implies that

j;
(1 - \D(z)\)l(l - \z\) \dz\ < oo.

Then if c = min{7r, m~lly}, Pic (l-\D(T(6))\) \d\~y d6<ao since |r'(0)| is

bounded away from 0. So, sup{|D(z)|:z 6 T} = 1, and \D(z)\-^\ as z->l

along T. Thus, \B(z)\-+l as z-*\ along Y.

It now follows from (2) and the series expansion for ||AJ that

íc2(i-KI2)/li-«„r(0)i2¿0<ao,
J-*   n

if we again use the fact that |T'(0)| is bounded away from 0. This implies

that

2(i-Ki2)iu-«j\0)r2d0< co,

where i„=arga„, m'=min{m, J}, and I=(tn—m' \t„\y,tn) if i„>0 and

I=(tn,tn+m'\tnY) if tn<0.

Since B(z) has a limit of modulus one as z-*\ along T, a theorem of

Lindelöf (see [6, p. 460]) says that B(z) has a limit of modulus one as

z—>-l inside Y. So, there is an integer n0 such that an is outside of Y for

each n.%nü. In other words, 1 — |a„|<m |argan|y if n>jn0. Then,

|1 - anY(6)\2 = (1 - k,r(0)|)2 + 4 \anY(6)\ sin2 |('» - 6)

^ (1 - \a„\ + m |0|T + (tn - 0)2

^ (m \t„V + m \6\>)2 + (t„ - 0)2 ^ 5m2 |f„p

if 0 e I and n^.n0. So,
OO

2 (1 - Kñ/larg aj? < co.
n=nn

The convergence of (1) follows since sin [arg an\^\l— an\.
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Next let us extend Theorem 1 to the case of a general inner function.

Since there is much duplication with the proof of Theorem 1, we shall only

sketch the proof of the extension.

Theorem 2. Let <j) = MBs be an inner function, and choose any l,edU,

y_l, and zzz>0. Then (1) converges and

(4) fV-^TMo-O)
Jo

converges if and only if

(5) Í       \\K*\\*\dz\ <co.
JrT.y.m

Proof. As before, we can assume that £=1. Also, we shall assume,

in order to avoid trivialities, that B is an infinite Blaschke product and

í has infinitely many point masses and a nontrivial continuous part. Let

usnotethatifM(z)=fe\ ||A-f ||2=(l-|z|2fc)/(l-|z|2) since |è| = l. So, (5)

with (f> replaced by M always holds.
Now let us assume that (1) and (4) converge. Then by Theorem 1, (5)

with (f> replaced by B holds. Since (4) converges, (4) with a replaced by

ac converges. In [2], it is shown that

l|K*12 = 2 f'k,(z)lVll - e-«z\2 dacit),
Jo

where sc,t is the inner function given by

s,((z) = exp{- JV + z)/ieie - z) ¿crc(0)

The proof that (5) with <p replaced by sc holds now can be seen to parallel

the corresponding part of the proof of Theorem 1. Also in [2], there is a

series representation for \\Kfa\\, which we can use to prove that (5) with <f>

replaced by sa holds.

If cf> and ip are any two inner functions, then

1   -  \4>iz)Viz)\2 =  1  - |¿(2)|3 +  |^(Z)|2 (1   - |1Z>(Z)|2),

and so,

1|K?T = HKtll2 + |^(z)|2 HX^II2 = HKtll2 + \\Kl\\2.

Therefore, the results of the last paragraph can be combined to show that

(5) holds.

Conversely, assume that (5) holds. If <¡> and w are any two inner func-

tions, 1-|^(z)y)(z)|2=1-|^(z)|2, and so \\KtvV^\\K*\\*. Thus, (5) holds
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with <f> replaced by B, se, or sa. Therefore, (1) converges, and in an anal-

ogous way (4) with o replaced by ac or aa converges.

4. The variation of an inner function. In [5], Cargo proves that the

convergence of (1) with y = l implies the finiteness of the length of the

curve which is the image under B of the line segment joining any point

aeU with £. This leads us to

Corollary. Let cf>=MBs be an inner function, and choose any l,edU,

y^l, and w>0. If (I) and (4) converge, then

(6) f        |f (z)| \dz\ < oo.

Proof. As we noted in the proof of Theorem 1, \\Kf\\2\>\B(z)\-\B'(z)\.

It is shown in [4] that the convergence of (1) implies that |5(z)|—>4 as

z^-£ along T. So, (6) with <£ replaced by B follows from (2). In a similar

way, we can show that (6) also holds with </> replaced by sc or sa. The

desired result then follows directly.

In [3], Ahern and Clark prove that (1) converges for an integer value of

y if and only if the (y— l)st derivative of each subproduct of B, including

B itself, has a finite radial limit at £. This proves half of

Theorem 3. Let B be a Blaschke product with zeros {an}, and choose

any l,edU and any positive integer y. Then (1) converges if and only if for

each subproduct f of B, including B itself, we have

i
(y)r(7) \fy'(ír)\ dr < oo.

Jo

Proof. If (7) holds for each subproduct / of B, we can use the just

mentioned result of Ahern and Clark to immediately give the convergence

of (1). So, let us now assume that (1) converges. As usual we can take £

to be 1. So we can assume that (3) converges.

In [1], it is noted that

B^(r) = yy (y -[) y b^-^m u +1)! ä^ - K|2)
áw / ti " d - äjr2

Also from  [1], we see that we can find a constant C0 such that

|5ir-w)(r)|<C0 for any 0<r<l,y=0, l,--- ,y-\, and n=l,2, ••■.

Then

[\^\r)\dr^Cx%(\ - K|2)f|l - ânr\-{y+»dr
Jo „-1 Jo
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for some constant Q. By the law of cosines, |1— ânr\2=(l — r)2+\ \tn\2

for /„=arga„ close to 0. Then for any such zz, \l—änr\y+1=il—r)y+1+

kr1 \tn\y+\ k=2y+1. So,

11 _ änr\-{y+1) dr < (1 - r)~iy+1) dr + \       k \tn\-{y+1) dr
Jo Jo Jx—\tn\

= (k+l¡y)\tn\-y-\ly.

Therefore, the convergence of (3) implies that (7) holds for f=B. Iff is any

other subproduct of B, the zeros off will satisfy 2 (1 — laJ2)/|l— an\y<co,

and so we can apply the above work directly to /to show that (7) holds

for/.

It is possible to extend Theorem 3 to general inner functions by intro-

ducing the concept of divisor as was done in [3].

5. An application. Let <f> be any inner function, and let p he any com-

plex number of modulus less than 1. It is easily checked that ^(z)=

i<f>iz)—p)lil—ß<f>iz)) is again an inner function.

Theorem 4. Let <p = MBs be an inner function, and let p be any complex

number of modulus less than 1. If, for any £ e dU and any y= 1, (1) and (4)

converge, then the corresponding sum and integral for <z>„ also converge.

Proof.    Let us compute

lIKMl2 = (1 - \<piz) -p\2\l- ß<?iz)\-2)Hl - \z\2)

= |1 - ß<p(z)\~2(\l - ß<p(z)\2 - \<Kz) - pt\2)l(l - \z\2)

= |1 - ß<p(z)\~2((l - \p\2) - (1 - N2) |<¿(z)|2)/(l - |z|2)

= (i -H2)|i-^(z)r2iiKtn2.

Since (1) and (4) converge for <f>, Theorem 2 implies that (5) holds for cf>.

But since |//|<1, the above computation implies that (5) holds for ^.

Again applying Theorem 2, we see that (1) and (4) converge for (/>„.

The above theorem gives us information about the p points of a

Blaschke product B. Let {b,,} he the sequence of all points (counting

multiplicity) for which B(b„)=/x. Choose any ÇedU and any y=l. If

(1) converges, then (1) with the sequence {«„} replaced by the sequence

{bn} converges by Theorem 4 since {/>„} is the sequence of zeros of B^.
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