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A  SYMMETRIZABLE  SPACE THAT IS  NOT PERFECT

DENNIS A.  BONNETT1

Abstract. An example is given of a Hausdorff symmetrizable

space which has a closed subset that is not a Gá-subset (thus, it is

not perfect) and which is not subparacompact. This example is then

used in the construction of a symmetrizable T'espace Y having a

point x„ such that {x0} is not a Gá-subset of Y.

A topological space S is said to be a symmetrizable space provided that

there is a distance function (or "symmetric") d defined for S such that,

if each of x and y is a point of S, then (1) d(x, y)=diy, x), (2) dix, y)—0

and dix,y)=0 if and only if x=y, and (3) a subset F of S is closed if and

only if c/(x, F)>0 for each x in S—P. The space S is said to be semi-

metrizable if d satisfies conditions (1) and (2), and if condition (3) is

replaced by (3') a point p is a limit point of a subset M of S if and only if

dip, M)=0. A topological space is said to he perfect if every closed subset

of S is a G¿-subset. A topological space 5 is said to be subparacompact

if every open cover of S has a cr-discrete closed refinement.

The symmetrizable spaces were defined by A. V. Arhangel'skiï, in [1],

and a great deal of work has been done in investigating the properties of

such spaces and in determining their relationship to other classes of

abstract topological spaces (see [2], [5], and [8]). In [8], S. Nedev makes

the inquiry, attributed to E. Michael, as to whether or not every sym-

metrizable space is perfect. This question becomes especially interesting

in view of the fact that the closely related semimetrizable spaces are per-

fect. In this paper an example will be given of a Hausdorff symmetrizable

space that is not perfect. In addition, it will be shown that this space is

not subparacompact, answering an inquiry of D. K. Burke, in [4], as to

whether or not each symmetrizable space is subparacompact. It should

be noted that the space of Example 1 is not regular. Thus, it remains an

open question whether each regular symmetrizable space is perfect (or

subparacompact).
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Example 1. Let 5 denote the set of points in the coordinate plane

topologized by specifying a subset U of S to be open if and only if the

intersection of U with any vertical or horizontal line is open relative to the

Euclidean topology of that line. Define a distance function for S by

d(z, w) = \z—w\, if z and w are on the same vertical or horizontal line

(|z—w\ indicates the Euclidean distance between z and w), and d(z, w)=l

otherwise.

It is clear that the distance function d is a symmetric for the topology

of S and that the topology of S contains the Euclidean topology of the

plane. The space S has been considered previously in the literature by

J. Novak, in [9], and later by A. V. Arhangel'skii, in [3]. It will be shown

that the space S is not perfect. Hereafter, S will always denote the space

of Example 1.

Lemma 2. There exists a subset G, of S, which is closed in the space S,

dense in the coordinate plane relative to the Euclidean topology, and con-

sists of exactly one point from each vertical and each horizontal line in S.

Proof. The set G is the graph of a discontinuous real valued function

/, of a real variable, such that f(x+y)=f(x)+f(y) for all x and y in R.

A proof of the existence of such a function (including the Euclidean

denseness of its graph) has been done by G. Hamel, in [6].

Lemma 3. If H is an open subset of S containing the set G of Lemma 2

andiflx={(x,y)\y is in R), then A = {x in R\lxr\(S—H) is second category

in lx} is first category in R.

Proof. Assume that A is second category in R. Since S—H is closed in

S, it follows that for each x in A, the set lxd(S—H) is closed relative to

the Euclidean topology on lx. Thus, for each x in A, the set lxr\(S—H)

contains a closed interval Ix. It will be shown that there exists a natural

number n and a second category (in the reals) subset B of A, such that for

each x in B, the closed interval Ix has length at least l\n. Assume that no

such n and B exists. Then, for each n in N, the set v4„ = {x|x is in A and

the length of Ix is equal to 1/«} is of first category in R. Therefore,

A= U {^4„|«= 1,2,3, • • •} is of first category in R and a contradiction is

obtained.

Let n, A, and B be as described above. Define D={D\i—\, 2, 3, • • •}

where

Di = l(x, y)

= ((*, y)

5í y ^-and x is in R),   for i an odd
An An

— — 5í y ^-and x is in R\,   for i an even
An An

natural number, and

for i an even

natural number.
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It will be shown that there exists a natural number zzz and a second

category (in the reals) subset C of B, such that for each x in C, (IxC\Dm)=

(lxC\Dm). Assume that no such m exists. Then for each zzz, the set B¡ =

{x|x is in B and (Ixr\Di) = (lxr\Di)} is first category. But, for each x in B,

the length of Ix is at least 1/zz and the length of 1X<~^D{ is 1/2«, for z'=

1, 2, • ■ • . Therefore, B=\J {Bf\i=l, 2, 3, • • •} and consequently, B is

first category in R and a contradiction is obtained.

Let zz, A, B, m, and C be as described in the previous paragraphs.

Since C is second category in R, it must be dense in some closed interval

/ in R. Let K= \J {Ix\x is in C). The set K is Euclidean dense in a rec-

tangle K', having width equal to the length of the closed interval / and

having height l/2zw. Since G is a Euclidean dense subset of S, it follows

that some point p, of G, is in K'. But this implies that d(p, K)=0, and thus

p cannot be an interior point of H. This is a contradiction. Therefore, A

is first category in R.

Theorem 4.    The symmetrizable space S is not perfect.

Proof. It will be shown that the set G of Lemma 1 is not a G^-subset

of S. Assume that G=(~) {C7i|z=l, 2, 3, • • •} where each G, is open in S.

Since each G¿ is an open set containing G, the set At={x\x is in R and

lxry(S—G¡) is second category in lx) is first category in R by Lemma 3.

Let A=R— IJ L4i|i'—1, 2, 3, • • •}. Then A is second category in F. If x is

in A, then for each i, lxr\(S—G¿) is first category in /,. Thus, lxn(S—G) =

U {lxr\(S—G¡)\i=l, 2, • • •} is first category in /,.. Therefore, for each x

in A, lxC\G is second category, which contradicts G containing but one

point from each vertical and each horizontal line. Thus, G is not a Gd-

subset of S.

Theorem 5.    The symmetrizable space S is not subparacompact.

Proof. Assume that the space 5 is subparacompact. Let G be the

closed subset of S defined in Lemma 2. Define Ux=S—(G — {x}). Then,

for each x in G, the set Ux is open and contains only one point of G.

Define U={Ux\x is in G}. Since U is an open cover of S, there is a refine-

ment 3>=\} {3>A\i=l, 2, 3, • • •} of U, such that for each i, Qi is a discrete

collection of closed sets. For each i in A', let F¿ = IJ {D in S,|DnG = 0}.

Since for each z, F¿ is the union of a subcollection of a discrete collection

of closed sets, it follows that F, is closed. Since the Euclidean topology

of the plane is a subset of the topology of S, each point of 5 is a Gô-

subset. Thus, for each x in 5", there exists a sequence of open sets Alx,

A2x, A3x, ■ ■ ■ such that {x} = H {Aix\i=l, 2, 3, • • •}. For each i in N, it

is clear that each point x in G is contained in at most one member of

S¿v For each z", let G¿ = {x in Glx is in some member of ^J. If x is in G¡,
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let Dix be the member of &t such that x is in Dix. For each i and /=

1, 2, 3, •• -, let Ki(j)=[j {D.ixn(S-Ajx)\x is in GJ. Since each Kt(j) is

the union of a subcollection of a discrete collection of a closed sets, it

follows that Kt(j) is closed for each i and/

Thus 5-C7=(U{F!|/=l,2,3,---})u(U{Ai(;)|/,y=l,2,3,---}). It
has been shown that S—G is an F^-subset of S. Therefore, G must be a

(/¿-subset. This contradicts Theorem 4. It follows that the space S is not

subparacompact.

The space S will now be used in the construction of a Fj-syuímetrizable

space Y having a point x0 such that {x0} is not a Grsubset of Y.

Theorem 6. There is a symmetrizable space containing a point which

is not a Gysubset.

Proof. Let S be the space of Example 1, d the symmetric for S, G

the subset of 5 described in Lemma 2, and let x0 be a point of G. Let

y=(S—G)U{x0}, and define a function/from S onto y by

f(x) = x,     if x is in S — G   and

= x0,    if x is in G.

Let d' be a distance function for Y defined by

d'(x, y) = d(x, y)    if x and y are not equal to x0,

= c/(x, G)   if v = x0   and

= i/(y, G)    if x = x0.

Topologize F by defining a subset P of Y to be closed if and only if

d'(x, P)>0 for any x in 7-P.

It is a routine exercise to show that/is a continuous function from the

space S onto the symmetric space Y. The set {x0} is not a G^-subset of Y,

since G is not a G¿-subset of S.
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