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THE SPACE OF RETRACTIONS OF A 2-MANIFOLD

NEAL R.  WAGNER

Abstract. Let M2 be a 2-manifold and let A be the embedding

of M2 into its space of retractions which maps each point to the

constant retraction to that point. Denote by ¿f(M2) the component

containing the image of A. The embedding A, with range restricted

to ^f(M2), is shown to be a weak homotopy equivalence if M2 is

compact, or if M2 is complete and the metric topology is used.

1. Introduction. In [8], the author studied one component of the

space of retractions of the 2-sphere and the annulus, namely the compo-

nent consisting of retractions with contractible image (the nullhomotopic

retractions). This paper extends the results of [8] to more general 2-mani-

folds. The techniques are similar to those in [8], and we refer the reader to

that paper. The author would like to express his gratitude to the referee of

[8] for suggesting the method of proof in this paper and to C. W. Neville

for some helpful conversations.

For any 2-manifold M2, let 0t(M%) denote the space of retractions of

M2, with either the compact-open or the sup-metric topology. Let A be

the embedding of M2 into £%(M2) which takes each u e M2 to the constant

retraction of M2 to u. Denote by jSf (M2) the component of ¿%(M2) con-

taining the image of A. We can now state the main result of this paper.

Theorem. The embedding A : M2^>-S£(M2) is a weak homotopy equiva-

lence in two cases:

(1) if M2 is compact and the compact-open (=sup-metric) topology is

used, or

(2) if M2 is complete and the sup-metric topology is used.

These cases are exactly those for which <£(M2) consists of all retractions

with compact,  contractible image  (see   §3).  Any  (second  countable)

Presented to the Society, May 17, 1971; received by the editors August 16, 1971.

AMS 1970 subject classifications. Primary 54C15, 54C35, 57A05; Secondary 54C65,
55D10, 30A30.

Key words and phrases. Retract, retraction, two-manifold, weak homotopy equiva-

lence, function space, compact-open topology, sup-metric, selection, Riemann surface,

conformai mapping, zero-regular convergence.
© American Mathematical Society 1972

609



610 N.  R.   WAGNER [August

2-manifold is complete in some metric, so case (2) of the theorem will

apply in general with respect to some sup-metric on M(M2).

By definition [7, p. 404], A is a weak homotopy equivalence if the in-

duced maps A* : 7Tn(M2)^>-iTn(£i'(M2)) are isomorphisms, for each n. If ev

denotes the evaluation map (ev(cp) = cp(u0) for any retraction <p and some

basepoint ug of M2), then clearly ev o A is the identity map on M2, so that

it will suffice to prove that A* is surjective. The underlying idea of the

proof is to produce, corresponding to certain retractions cp, a canonical

simple closed curve in M2 which bounds a disk containing the image of cp.

Then, essentially working within the disk, we can construct a homotopy

from cp to A ° e\(cp). These simple closed curves will be provided by a

selection theorem of E. Michael. A finite-dimensionality condition in this

theorem prevents us from simply showing that A o ev is homotopic to the

identity map on =£?(A/2) and concluding that A is a homotopy equivalence.

2. Preliminaries on conformai mapping. In any 2-manifold M2, let

Sf denote the collection of simple closed curves which bound a disk in M2

and which do not meet dM2. (Since the theorem was proved in [8] for

A2, we assume M2 is not S2.) We shall use much of the notation of [8],

which included E2 for Euclidean 2-space, B2 for the unit 2-ball, and Cr

for the circle with center at the origin and radius r>0. In addition, we

denote the closed disk which Je if bounds by B(J), and its interior by

int(B(Jj). IfKeif and J^mt(B(K)), then let A(J, K) denote the closed

annular region bounded by / and A. In particular, we use A2 for A (Cx, C2).

The topology of 0-regular convergence can be defined on if as follows:

a sequence {/¿} converges 0-regularly to J0 if there are embeddings

f:Cx-*M2 such that/(C1)=/i and {/} converges uniformly to/0 on Cx.

(It can be seen from the work Mow that on ¿7 this definition is equivalent

to the usual one. See [3] and |4].)

Lemma 1. Let F be any compact, contractible subset of M2, not meeting

dM2. Then there is a J e ¡f such that F is contained in int(B(J)).

Proof. The universal covering space of M2\dM2 will be the plane £2 or

the 2-sphere S2 [1, p. 104], In either case, £ lifts to a homeomorphic copy

F [7, p. 66], and £2\£is homeomorphic to £2 minus a point (and likewise

for S2), so it is easy to produce a family of simple closed curves about F.

One of these which is close enough to £ will project to a suitable curve

about £in A/2, completing the proof.

Let M2 be any orientable 2-manifold. Give M2 a conformai structure so

as to make it a Riemann surface. (See [1] and [6].) Suppose that for each

nonnegative integer i, elements J¿ and K( of £é are given such that each

Ji lies in int(B(KA). Then there are homeomorphisms f\; B2^>-B(JA and
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gt:A2->-A(Ji, Kj) which are uniquely determined by the conditions:

(aj) each f i is conformai on int(F2),

(a2) each/ maps the point (1, 0) to some i\ eJ¡,

(a3) each/ maps the origin to some ut e int(F(F¿)),

(b,) each gi is a radial contraction of a map conformai on intL4 (C,, Cr(i))),

for some r(z')>l, and

(b2) each g¿ maps (1, 0) to vt.

Moreover, we have the following result.

Continuity Property. If {/} and {Kt} converge 0-regularly to J0 and

K0, respectively, and if {u,} and {i>¿} converge to u0 andv0, respectively, then

{/} converges uniformly to f0 on B2 and {g{} converges uniformly to g0 on

A2.

Proof. Select K e if such that K¡ is contained in int(F(ÁT)) for all

sufficiently large i. The set int(F(A')) is an open simply connected Riemann

surface, clearly of hyperbolic type, and hence ([1, p. 203], [6, p. 197]) is

conformally equivalent to int(F2). This translates the situation to the plane,

where the results are known. (See [3], [4], and [8].)

If M2 is not orientable, it has a conformai structure provided conjugates

of conformai maps are included. The above results will still hold if all the

maps involved are conformai with respect to an orientation of the domain

intiBiK)).

3. Proof of the theorem. The proof uses a selection theorem of E.

Michael [5], which we state here in a very weak form.

Theorem M. Let B and X be metric spaces, where B is complete and the

dimension of X is _zz. Let r be an open mapping of B onto Xsuch that each

ipoint) inverse under r has vanishing homotopy groups of order ^zz— 1, and

such that the collection of inverses under r is equi-LC1-1. Let e be a mapping

of a closed subspace Y of X into B such that eiy) e T~l(y), for all y e Y.

Then e extends to a mapping e* of X into B such that e*(x) e r~1(x),for all

xeX.

(The property equi-LC-1 is a strong form of LCn_1. See [5] and [8,

Definition 1.4].)

Let M2 be any 2-manifold, and denote by Jf(M2) the space of those

retractions of M2 with compact, contractible image. The construction in

this section is designed to handle Jf (M2), and it will follow from later work

that Jf(M2) is pathwise connected. If M2 is compact, there is a number

e such that any two self maps within a distance e are homotopic. Since the

elements of Jf (M2) are nullhomotopic, it is clear that £'(M2)=Jf(M2).

If M2 is complete and we use the sup-metric topology, then for any

cp eJf(M2), we can produce a compact submanifold N2 of M2 and an
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£>0 such that d(\p, cp)<e implies im(ip)^N2, and so for some £'>0,

d(y>, cp)<e implies if e Jf (M2), i.e., Jf (Af2) is open in M(M2). (We can

construct A2 by covering \n\(cp) with finitely many suitable closed disks.)

Any cp e 0i(M2) at a distance 0 from Jf(M2) must have compact image,

since otherwise there would be a sequence of points in im(cp) no two of

which are closer together than some s>0, and then some y>eX~(M2)

would not have compact image. Arguing as before, we see that cp e Jf (A/2).

Thus Jf (A/2) is also closed in @(M2), so that =Sf(M2)=JT(M2). If M2

is not compact and the compact-open topology is used, or if M2 is not

complete and the sup-metric topology is used, then S£(M2) will not be

equal to Jf (Af2). This can be seen by embedding a half-open interval in

M2 as a closed subspace and considering retractions onto it and onto

closed subintervals of it.

As noted in §1, in order to prove the theorem, it suffices to prove that

the induced map A* is surjective. Thus let $:(/", dIn)^(^f(M2), A(u0))

be an element of 7rn(S£(M2)), where u0 is the basepoint of M2. Recall the

definition of y from §2. For each cp e =£?(M2) such that im(q9) is compact

and does not not meet dM2, let ¿/'(cp) denote the set of all J e Sf such that

in\(cp) is contained in int(£(J)). By Lemma 1, each ¿f'(cp) is nonempty.

In both cases of the theorem, use the elbowroom construction of [8,

Remark 1.2] to deform cp so that im(cp) is disjoint from dM2 for all

cp e im (O). Let J1 be the subspace of InxSf° consisting of all (x, J) such

that xel" and / e ¿f (<J>(x)). Let t be the restriction to 38 of the projection

ofFx^ onto In. Choose a fixed J0e^ such that u0 e int(B(Jn)), and

let e:í/'^áf be defined by e(y)=(y, J0).

We now apply Theorem M with X, Y, B, t, and e of the theorem equal

to I", dln, ¿i$, t, and e as defined in the previous paragraph. In §4 we verify

that the hypotheses of Theorem M are satisfied. Assuming this has been

done, we get an extension e*:In^-SS such that for each x eln, e*(x) e

T-l(x) = {x}x3f(<&(x)). If t2 denotes the projection onto the second

coordinate, then r2 ° e*(x) is a canonical member of ¡f such that the disk

it bounds contains in\(<&(x)) in its interior.

For each xeln, let f(x):B(r2° e*(x))^*B2 be the homeomorphism

which is conformai on the interior and which maps the point ev ° <D(x) =

<D(x)(w0) to the origin (0, 0). The map/(x) is unique up to a rotation and

possibly a reflection (if A/2 is not orientable), but the construction that

follows is independent of rotations and reflections. We can define í>(x)

piecewise, on B(t2 ° e*(x)) and on the closure of its complement. The map

f(x) o cp(x) °f(x)~x is a retraction of B2, and thus [8, Theorem 1.1] is

homotopic to the constant retraction to (0, 0). The homotopy is given

by ht °f(x) o <P(x) °f(xYx o hi1 ° pt, where pt projects A(Cx_t, Cx) radially

to Cx_t, and ht is a radial homeomorphism of B2 onto pt(B2). Thus on
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B(t2 o e*(x)), add/(x)_1 on the left and/(x) on the right to get a homotopy

from 0(x) to A(/(x)-x(0, 0)). On M2\int(F(r2 o e*(x))), use the homotopy

/(x)_1 ° ht °f(x) ° O(x). It is easy to see that these two homotopies agree on

the curve t2 o e*(x), so together they give a homotopy from <D to a map Y

defined byT(x)=A(/(x)_1(0, 0))=A ° ev o <&(x). Hence O is homotopic to

A o ev o O, so that A* is surjective and A is a weak homotopy equivalence.

4. The hypotheses of Michael's theorem. In §3, we postponed the

verification that the use of Theorem M is justified. It is easy to see that

each Sf(cp) is homeomorphic to an open subspace of Sf, and if we prove

that Sf is LC"_1, then the equi-LC"-1 property will follow easily, as in

[8, Lemma 2.3]. Using the local metric on Sf described below, the proof

that 0$ is an open subspace of InxSf is similar to that in [8, Lemma 2.2],

and so the map r is an open surjection. The remaining hypotheses will be

clear from the following lemma.

Lemma 2.    (a) The space Sf can be given a metric in which it is complete.

(b) For each cp e Sf(M2) with im(qj) not meeting dM2, the space Sf(cp)

is contractible (in itself).

(c) The space Sf is locally contractible.

Proof. Let J0e S" and choose a closed neighborhood of /„ small

enough so that all its elements contain a fixed point zv0 in their interior.

For each / in the neighborhood, consider the unique homeomorphism

which maps B2 onto B(J), is conformai on the interior, takes the origin

to zz0, and has positive derivative at the origin. (If M2 is not orientable, it

will be unique up to a reflection.) Let Jf denote the space of embeddings

f:Cx~->-M2 such that/(Ci) e Sf. (GiveJ^ the topology of uniform conver-

gence.) The remarks above show that a sufficiently small closed neighbor-

hood in ¡f is homeomorphic to a closed subspace of Jf. As in [S],Jf can

be remetrized so as to be complete, so Sf can be given a complete metric

locally. Also, Sf is the continuous image of^zf under the obvious projec-

tion, so Sf is Lindelöf and hence paracompact. Thus Sf is metrizable and

locally complete, so it can be given a metric which makes it complete

[2, pp. 190, 236].
To prove part (b), suppose /„ e Sf(cp), and let/be any homeomorphism

of B(J0)\im((p) onto fi2 minus the origin. For Je Sf(<p), let a equal half

the supremum of numbers ß e (0, 1] such that/-1^) lies in B(J). Let

K=f~1(Cx). For some r>l, there is a homeomorphism g:A(K, /)->

A(Cx, Cr) which is conformai on the interior and uniquely determined up

to a rotation. The collection of curves {g-1(Cp):l _/?_/■} defines a defor-

mation in Sf(cp) from / to K. We do this simultaneously for all / e Sf(cp)

to get a deformation of Sf(cp) onto the set {/_1(CJ:0<a_|}. It is then

easy to deform this set in Sf(cp) to the single curve/_1(C1)=J0.
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For part (c), first prove that Jf is locally contractible, using techniques

similar to those in [8, Lemma 3.4]. (One can work within a fixed disk in

A/2, extending an embedding to a homeomorphism and using the fact

that the space of homeomorphisms of that disk is locally contractible.)

Then use the projection of Jf onto if (and the local inverse homeomor-

phism) to show that if is locally contractible.
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