SHIFT DYNAMICAL SYSTEMS OVER FINITE FIELDS

MELVYN B. NATHANSON¹

ABSTRACT. A trajectory over the finite field F_q is a function from the integers I to F_q . The set $X(F_q)$ of all trajectories over F_q is a topological vector space in the product topology induced by the discrete topology on F_q , and coordinatewise addition and scalar multiplication of trajectories. Let ϕ be a continuous linear operator on $X(F_q)$ which commutes with the shift. If x is a trajectory over F_q , then the ϕ -orbit of x is the sequence of trajectories x, $\phi(x)$, $\phi^2(x)$, \cdots . Suppose that ϕ is not a scalar multiple of the identity. Theorem. The trajectory x is periodic if and only if the ϕ -orbit of x is eventually periodic.

Let S be a finite set, and let I be the set of all integers. A trajectory over S is a function from I to S. Let X(S) be the set of all trajectories over S. The discrete topology on S induces a product topology on X(S). The shift is the continuous map $\sigma: X(S) \rightarrow X(S)$ defined by $(\sigma(x))(i) = x(i+1)$ for all $x \in X(S)$ and $i \in I$. The pair $(X(S), \sigma)$ is called the shift dynamical system over S.

A shift-invariant operator on S is a continuous map $\phi: X(S) \rightarrow X(S)$ which commutes with the shift. These operators have been characterized by Curtis, Hedlund, and Lyndon [1]. Let S^n be the set of n-tuples of elements of S, and let f be any function from S^n to S. Let $m \in I$. Define $\phi: X(S) \rightarrow X(S)$ by

$$(\phi(x))(i) = f(x(i+m+1), x(i+m+2), \cdots, x(i+m+n)).$$

It is proved in [1] that ϕ is a shift-invariant operator on X(S), and, conversely, that every shift-invariant operator on X(S) has this form for some integers m and n, and some function $f: S^n \to S$.

Let ϕ be a shift-invariant operator on X(S), and let $x \in X(S)$. The ϕ -orbit of x is the sequence of trajectories x, $\phi(x)$, $\phi^2(x)$, $\phi^3(x)$, \cdots . The ϕ -orbit of x is eventually periodic if $\phi^{k+Q}(x) = \phi^k(x)$ for some positive

Received by the editors August 24, 1971.

AMS 1970 subject classifications. Primary 58F20, 39A40; Secondary 12C10, 46A45, 54H20.

Key words and phrases. Shift dynamical systems, symbolic flows, periodic trajectories, periodic orbits, sequence spaces.

¹ Research supported in part by NSF Predoctoral Traineeship from the University of Rochester.

[©] American Mathematical Society 1972

integer Q and for all sufficiently large k. The trajectory x is *periodic* if x(i+p)=x(i) for some positive integer p and for all $i \in I$.

LEMMA 1. Let x be a trajectory over S, and let ϕ be a shift-invariant operator on X(S). If x is periodic, then the ϕ -orbit of x is eventually periodic.

PROOF. Observe that if x(i+p)=x(i) for all $i \in I$, then $(\phi(x))(i+p)=(\phi(x))(i)$ for all $i \in I$. For by the above characterization of shift-invariant operators, there exist integers m and n and a function $f: S^n \to S$ such that

$$(\phi(x))(i+p) = f(x(i+p+m+1), \dots, x(i+p+m+n))$$

= $f(x(i+m+1), \dots, x(i+m+n))$
= $(\phi(x))(i)$.

It follows that $(\phi^k(x))(i+p)=(\phi^k(x))(i)$ for all nonnegative integers k and for all $i \in I$. Therefore, each trajectory $\phi^k(x)$ is completely determined by the p-tuple $R_k=((\phi^k(x))(1),\ (\phi^k(x))(2),\cdots,\ (\phi^k(x))(p))$. But there are only $|S|^p$ distinct p-tuples of elements of S. By the pigeon-hole principle, there must exist integers k_0 and k_1 with $0 \le k_0 < k_1 \le |S|^p$ such that $R_{k_0} = R_{k_1}$. Then $\phi^{k_0}(x) = \phi^{k_1}(x)$. Let $Q = k_1 - k_0$. Then $\phi^{k+Q}(x) = \phi^k(x)$ for all $k \ge k_0$, and so the ϕ -orbit of x is eventually periodic.

The converse of Lemma 1 is false. For example, let $S = \{0, 1, 2\}$, and define $f: S \rightarrow S$ by f(0) = 0 and f(1) = f(2) = 1. Let ϕ be the shift-invariant operator on X(S) defined by $(\phi(x))(i) = f(x(i))$. Let $y \in X(S)$ be any non-periodic sequence of 1's and 2's. Define $x \in X(S)$ by x(2i+1) = 0 and x(2i) = y(i) for all $i \in I$. Then $\phi^{k+1}(x) = \phi^k(x)$ for all $k \ge 1$, and so the ϕ -orbit of x is eventually periodic. But x is not a periodic trajectory over S.

Let F_q be the finite field with q elements. Define addition and scalar multiplication of trajectories over F_q component-wise: If $x, y \in X(F_q)$ and $a, b \in F_q$, then (ax+by)(i)=ax(i)+by(i). In the product topology induced by the discrete topology on F_q , the dynamical system $X(F_q)$ is a topological vector space.

LEMMA 2. Let ϕ be a nonzero shift-invariant linear operator on $X(F_q)$. Then there is an integer $m \in I$ and constants $a_1, a_2, \dots, a_n \in F_q$ with $a_1 \neq 0$ and $a_n \neq 0$ such that

$$(\phi(x))(i) = a_1x(i+m+1) + a_2x(i+m+2) + \cdots + a_nx(i+m+n)$$

for all $i \in I$.

PROOF. For some $m \in I$ and some $f: F_q^n \to F_q$, we have

$$(\phi(x))(i) = f(x(i+m+1), x(i+m+2), \cdots, x(i+m+n)).$$

Since ϕ is linear and nonzero on $X(F_q)$, it follows that f is linear and nonzero on F_q^n , that is, f is a nonzero linear functional on the finite-dimensional

vector space F_q^n . Therefore, there exist constants $a_1, a_2, \dots, a_n \in F_q$ not all zero such that

$$f(x(i+m+1), x(i+m+2), \cdots, x(i+m+n))$$

= $a_1x(i+m+1) + a_2x(i+m+2) + \cdots + a_nx(i+m+n)$.

Clearly, we can choose m and n so that $a_1 \neq 0$ and $a_n \neq 0$.

LEMMA 3. Let x be a trajectory over a finite field F_q . Then x is periodic if and only if there exist constants $a_0, a_1, \dots, a_n \in F_q$ not all zero such that

(1)
$$\sum_{r=0}^{n} a_r x(i+r) = 0$$

for all $i \in I$.

PROOF. Suppose that (1) holds for all $i \in I$. Clearly, we can assume that $a_0 \neq 0$ and $a_n \neq 0$. If n=0, then x(i)=0 for all $i \in I$, and so x is periodic. If n>0, then

(2)
$$x(i) = -a_0^{-1} \sum_{r=1}^{n} a_r x(i+r)$$

and

(3)
$$x(i+n) = -a_n^{-1} \sum_{r=0}^{n-1} a_r x(i+r).$$

Let T_j be the *n*-tuple $(x(j+1), x(j+2), \dots, x(j+n))$. Since there are only q^n distinct *n*-tuples of elements of F_q , it follows that $T_{j_0} = T_{j_1}$ for some integers j_0 and j_1 such that $0 \le j_0 < j_1 \le q^n$. Let $p = j_1 - j_0$. Then x(i+p) = x(i) for $i = j_0 + 1, j_0 + 2, \dots, j_0 + n$. But then (2) and (3) imply that x(i+p) = x(i) for $i = j_0$ and $i = j_0 + n + 1$. By induction, it follows that x(i+p) = x(i) for all $i \in I$, and so the trajectory x is periodic.

Conversely, if x(i+p)=x(i) for all $i \in I$, let n=2p-1, and set $a_r=1$ for $r=0, 1, \dots, p-1$ and $a_r=-1$ for $r=p, p+1, \dots, 2p-1$. Then

$$\sum_{r=0}^{2p-1} a_r x(i+r) = \sum_{r=0}^{p-1} x(i+r) - \sum_{r=p}^{2p-1} x(i+r)$$
$$= \sum_{r=0}^{p-1} x(i+r) - \sum_{r=0}^{p-1} x(i+r)$$
$$= 0$$

for all $i \in I$, and so condition (1) is satisfied.

COROLLARY. Let x be a trajectory over a finite field F_q , and let ϕ be a nonzero shift-invariant linear operator on $X(F_q)$. If $\phi(x)$ is periodic, then x is periodic.

PROOF. By Lemma 2, there exist constants $a_1, a_2, \dots, a_n \in F_q$ with $a_1 \neq 0$ and $a_n \neq 0$ and an integer m such that $(\phi(x))(i) = \sum_{r=1}^n a_r x(i+m+r)$. If $(\phi(x))(i+p) = (\phi(x))(i)$ for some positive integer p and all $i \in I$, then

$$\sum_{r=1}^{n} a_r x(i+m+r) - \sum_{r=1}^{n} a_r x(i+p+m+r) = 0$$

for all $i \in I$. By Lemma 3, the trajectory x is periodic.

THEOREM. Let x be a trajectory over a finite field F_q , and let ϕ be a shift-invariant linear operator on $X(F_q)$. Assume that ϕ is not a scalar multiple of the identity. Then x is periodic if and only if the ϕ -orbit of x is eventually periodic.

PROOF. Suppose that $\phi_{\cdot}^{k+Q}(x) = \phi^{k}(x)$ for all $k \ge k_0$. Let $y = \phi^{k_0}(x)$. Then $\phi^{Q}(y) = \phi^{k_0+Q}(x) = \phi^{k_0}(x) = y$. By Lemma 2, there exist $m \in I$ and constants $a_1, a_2, \dots, a_n \in F_q$ not all zero such that

$$y(i) = (\phi^{Q}(y))(i) = \sum_{r=1}^{n} a_r y(i + m + r)$$

for all $i \in I$. Since ϕ is not a scalar multiple of the identity, then ϕ^Q is also not a scalar multiple of the identity. Therefore, if n=1, then $m \neq -1$. By Lemma 3, it follows that $y = \phi^Q(x)$ is periodic. Then the Q-fold application of the corollary to Lemmas 2 and 3 proves that the trajectory x is periodic.

Conversely, if the trajectory x is periodic, then by Lemma 1 the ϕ -orbit of x is eventually periodic.

REFERENCE

1. G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320-375. MR 41 #4510.

SOUTHERN ILLINOIS UNIVERSITY, CARBONDALE, ILLINOIS 62901