A 3-DIMENSIONAL ABRAHAM-SMALE EXAMPLE¹

CARL P. SIMON

ABSTRACT. The author constructs an open set of non Ω -stable diffeomorphisms on T^3 .

To further the search for generic properties of diffeomorphisms, we construct a new counterexample to the genericity of Axiom A and Ω -stable diffeomorphisms in $\mathrm{Diff}^r(T^3), r \geq 1$. This paper reduces the dimension in the original counterexample of Abraham and Smale [1] by applying a technique of Williams [3]. For a general reference, see [2].

Let $g_0\colon T^2\to T^2$ be a hyperbolic automorphism with fixed point θ . Let g_t for $t\in [-1,+1]$ be a smooth isotopy of g_0 to "derived-from-Anosov" (D-A) maps g_{-1} and g_1 as constructed in ([2], [3]). $g_{\pm 1}(\theta)=\theta$, but θ is a source for g_{+1} with 2-dimensional $W^u(\theta,g_1)$ and a sink for g_{-1} . The nonwandering set $\Omega(g_1)=\{\theta\}\cup \Sigma_1$, where Σ_1 is a 1-dimensional attractor; and $\Omega(g_{-1})=\{\theta\}\cup \Sigma_{-1}$, where Σ_1 is a 1-dimensional source. $T^2=W^u(\theta,g_1)\cup \Sigma_1=W^s(\theta,g_{-1})\cup \Sigma_{-1}$. Let U,V be 2-disks in U0 with U1 with U2 with U3 with U4 int U5 with U5 int U6 with U6 int U7 with U7 with U8 int U9 with U

Using g_t , construct diffeomorphism \bar{G} of $T^2 \times [-1, 1]$ such that (i) $T^2 \times \{\pm 1\}$ and $\{\theta\} \times [-1, 1]$ are invariant under \bar{G} , (ii) $\bar{G}|T^2 \times \{\pm 1\} = g_{\pm 1}$, (iii) \bar{G} maps points in $U \times [-1, 1]$ closer to $T^2 \times \{+1\} \equiv T_{+1}^2$ and sends points outside $V \times [-1, 1]$ closer to $T^2 \times \{-1\} \equiv T_{-1}^2$. The $W^u(x_{+1})$ and $W^s(x_{-1})$ are now 2-dimensional for $x_{+1} \in \Sigma_{+1}$ and $x_{-1} \in \Sigma_{-1}$. Construct \bar{G} so that for some such x_{+1} and x_{-1} , $W^u(x_{+1})$ and $W^s(x_{-1})$ have a point of transversal intersection. (Alternatively, follow \bar{G} by a map like b below which forces a $W^u(x_{+1})$ to intersect some $W^s(x_{-1})$ transversely.) Since $\Sigma_{\pm 1}$ are topologically transitive, we can write $\Sigma_{-1} \ll \Sigma_{+1}$ as in [1]. Extend \bar{G} to a diffeomorphism of $T^2 \times S^1$ with $(\theta, \pm 1) \equiv \theta_{\pm 1}$ and $\Sigma_{\pm 1}$ still hyperbolic. By composing \bar{G} with a C^∞ perturbation with support in $B = [V \setminus U] \times (-1 - \delta, -1 + \delta)$, one easily obtains G' whose 2-dimensional $W^s(\theta_{-1}, G')$ intersects the 1-dimensional unstable manifolds of Σ_{-1} transversally in B.

Received by the editors August 31, 1971.

AMS 1970 subject classifications. Primary 58F20, 58F10.

Key words and phrases. Differentiable dynamical system, generic property, Axiom A, Ω -stability.

¹ This work was partially supported by N.S.F. Grant GP-8007.

630 C. P. SIMON

Now, the 1-dimensional stable manifolds from Σ_{+1} foliate $T_{+1}^2 \setminus \{\theta_{+1}\}$. Let $G = b \circ G'$ where b has support in $V \times (1 - \delta, 1 + \delta)$ for small δ and forces the 1-dimensional $W^u(\theta_{-1}, G')$ to intersect the 2-dim set $\bigcup \{W^s(x): x \in \Sigma_{+1}\}$ transversally. Since $W^u(\Sigma_{+1}, G) \not \to \emptyset$, $W^s(\Sigma_{-1}, G) \neq \emptyset$, $W^u(\Sigma_{-1}, G) \not \to \emptyset$, we have a cycle in Ω . Since Σ_{+1} has type (1, 2) and θ_{-1} has type (2, 1), G does not satisfy Smale's Axiom A [1]. Since the W^u and W^s vary continuously and the above intersections are transversal (at least, topologically), all maps sufficiently near G will not satisfy Axiom A. The fact that none of these maps are Ω -stable follows as in §3 of [1]. For, the set of H' such that the "first" intersection of $W^s(\theta_{+1}, H')$ with $W^u(\Sigma'_{-1}, H')$ occurs on $W^u(x'; H')$ for some periodic x' in Σ'_{-1} and the set of H'' where the first such intersection occurs at a nonperiodic $W^u(x'', H'')$ with $x'' \in \Sigma''_{-1}$ are both dense in a neighborhood of G. But no map in the former set can be Ω -conjugate to any map in the latter set.

REFERENCES

- 1. R. Abraham and S. Smale, *Nongenericity of \Omega-stability*, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R.I., 1970, pp. 5–8. MR 42 #6867.
- 2. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 37 #3598.
- 3. R. F. Williams, *The D-A maps of Smale and structural stability*, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R.I., 1970, pp. 329-334. MR 41 #9196.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

Current address: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104