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HOMOLOGY  OF A FIBRATION  OVER
AN  ASPHERICAL  SPACE

YASUTOSHI  NOMURA

Abstract. The aim of this paper is to establish, for a fibration

over a space of type (Q, 1), an exact sequence involving the homol-

ogy homomorphisms induced by the projection. Specializing to

the case where the total space is aspherical, our sequence allows us

to add some extra terms to the Eckmann-Stammbach exact sequence

for a group extension with simple integer coefficient.

1. Statement of the result. All spaces, maps and homotopies in this

paper are assumed to be base-pointed and all spaces are assumed to have

the homotopy type of a CW complex.

Let Fl+EO^B be a Hurewicz fibration with path-connected F and B.

Through the operation ¡u of 05, the space of loops on B, on F (see [1, §3]),

ttx(B) operates on H.¡.(F); thus, H%(F) is a module over Zttx(B), the inte-

gral group ring of 77,(5). Let Q denote ttx(B) and we write Torjj? for Torf0.

In the next section we prove

Theorem 1.1. Suppose that TTkiB)=0 for \<k<n — m+l and that

HQiF)=0 for 0<q<m andm<Cq<n, where liïzz?<zz. Then there exists an

exact sequence

P*
Hn+1(E) —> Hn+1(B) ~^R—+ HJ[E)

^> Hr,iB) —> Tor°_m_1(/Ym(F), Z)

—► H„_iiE) —>...—> Hm+liB)
—► HJF) ®Q Z —► H JE)

^>HJB)—+0,

in which R is an abelian group such that the row and column are exact in the
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» Tor«_m(//m(F), Z) -► 0

if

Tor%_m+x(Hm(F),Z)

y

0

iv/iere ß is induced by pt and T—Hn_m(Q.B)0Hm(F).

Corollary 1.2. Under the assumption of Theorem 1.1, there exists

an exact sequence

Hn+i(B) - Tor«_m(tfm(F), Z) -* Hn(E)/^Hn(F)

-//n(ß)->---//m(ß)-0.

Now let

(1) 1-^/v-^G^ß^l

be a group extension. As usual, G acts on N by conjugation, which

induces the action of Q on H%(N), the coefficient of which is the additive

group of integers Z with trivial operators. In the preceding situation

let B and E be aspherical of type (Q, 1) and (G, 1) respectively, and let p

induce the homomorphism G-+Q in (1). Then F is aspherical of type

(N, 1). Since the topological action of ttx(B) on //„.(F) coincides with the

above one of Q on H,f(N) by [5, Corollary 1.4], Theorem 1.1 implies

Corollary 1.3. Suppose that HQ(N)=0 for 0<q<m and m<q<n,

where 1 ̂ m<«. Then there exists an abelian group R' making the following

sequences exact :

Hn+X(G) - Hn+X(Q) -+R'^ Hn(G) -> HH(Q)

- Tortm-i(Hm(N), Z) - Hn„x(G)

- • • • -* Hm(N) ®QZ^ Hm(G) -> Hm(Q) -* 0
a«c/

Hn(N) -+ R' ^ Tortm(Hm(N), Z) - 0.

/« particular, if Hn_m(Q; Hm(N))=0 (e.g. if Q acts trivially on Hm(N),

Hn-m(Q)=0 and Tor(Hn_m_x(Q), Hm(N))=0),  then there is an exact

following commutative diagram

H0(QB)®Hn(F)+T Hn(E)

-»- HJF) -► R
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sequence

HniN) -> Hn(G) -* HniQ) -> Tortm-i(Hm(N), Z) -* • • • -* Hm(Q) - 0.

For zzz=l the first half of Corollary 1.3 extends the exact sequence

obtained by Eckmann and Stammbach [2, Theorem 4.3, (VII')] (cf.

[7, sequence (A)]). For n=m+l, the second half is just the second part

of Theorem 1 of [5]. Note that Corollary 1.2, applied to (1), yields a

generalization of Theorem 2.1 of Ganea [3].

2. Proof of Theorem 1.1. As usual, S stands for the suspension functor

and the cofibre of a map/: A"—>- Y is denoted by Cf. Let PB denote the space

of paths in B emanating from basepoint and let

pk:Ek^B,   Ek = PB®--- ®PB®E       (k = l)

he the Whitney join of p0=p:E-*B and k path-fibrations FS—»5 (see [4]).

The fibre Fk of pk is the join

ÜB * ■ • • * Ü.B * F.
(k factors)

There are canonical inclusions jk: Ek_x—>-Ek satisfying pkjk=pk-x, which

induce the maps ck:C]>k_i-^CJ,k.

Lemma 2.1.    The cofibre of jk is of the same homotopy type as SFk_x-

Proof. Since Ek is the double mapping cylinder of PB*-Kk->-Ek_x

(cf. [4]), where

Kk -> PB

is a pullback square, hence Kk is homotopy equivalent to Fk_x, we see that

Ek is homotopically equivalent to the cofibre of Fk_x-+Ek_x. Thus, from

the Puppe sequence of Fk_x-+Ek_x the assertion follows.

Lemma 2.2.

H„(Fk_x) ^ 0    ifO<q<m + k-lorm + k-l<q<n + k-l,

S H0(ÜB) ® • • ■ ® /Y0(Í25) ® Hm(F)   ifq = m + k- 1.
(fc — 1 factors)

Proof. Since 77,(0^=0 for 1 "£/<«—m and since each path com-

ponent of £1/3 is in 1-1 correspondence with an element of 7r1(ß), it

follows readily that HQ(Q.B)=0 for \<q<.n — m. Therefore the lemma is

a consequence of the Kiinneth theorem.
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Lemma 2.3.    The cofibre of ck is homotopy equivalent to S2Fk_x, hence

ck.:Hg(CPtJ-^HQ(CpAis
bijective for q<.m+k or m+k+KqKn+k;

monic for q=m+k+\ ;

epic for q=m+k or n+k.

Proof.    Let CB denote the cone over B. Introduce the following

commutative diagram

/*
¡6-1

Pk-i Pk

B B

-><>*

-> CB

Y

c.

By Lemma 2.1, C} is homotopy equivalent to SFk_x, so that it follows

from the 3 X 3 lemma (cf. [4, Lemma 1.2]) that the cofibre of ck is homo-

topy equivalent to S2Fk_x, hence the first assertion. This, together with

Lemma 2.2, implies the second assertion.

Now let / denote the augmentation ideal of the integral group ring

ZQ, that is, the kernel of e:ZQ—>-Z; thus, the sequence

0 —► / —► ZQ -Î-». Z —> 0

is exact and / is Z-free. Note that H0(Q.B)^ZQ, H0(Q.B)^I. Q acts on

I®- ■ -®I (k factors) through x(yx®- ■ ■®yk)=xyx®- ■ -®xyk, x e Q, y¡ e /.

The following is a consequence of the construction due to Schmid

[6, p. 31].

Lemma 2.4.    Let M be a ZQ-module. Then Hk(Q, M)=TorJj?(Z, M) is

isomorphic to the kernel of the homomorphism

(I ® • • • ® I) ®0 M -* (ZQ ® I ® • ■ ■ ® I) ®Q M = I ® • ■ ■ ® I ® M,
(¿factors) (¿- — 1 factors) (fc—1 factors)

that is, to the homology of the 0-sequence

I®
(k +1 factors)

"k+l
® I® M->/® ® I® M-

(k factors)

-> I ® ■ ■ ■ ® I ® M.
(i -1 factors)

where dk is given by dk((m— l)®x2®- • ■®xk®m)=x2o)-1®- • ■®xka>-1®

com—x2®- ■ -®xk®m for co e Q, xt el, m eM.

Let ok:S(D.B * Fk_x)=SFk—>-CPk be the map defined in Lemma 1.1 of

[5] for the fibration pk and let H(fi) : Í1B * Fk_x-+SFk_x be the map obtained
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from the action p:Q.BxFk_x-+Fk_x by the Hopf construction. Let

ik:Fk-^-Ek denote the fibre inclusion. Consider the homotopy commutative

diagram

Fk \
Hip)

k      \
F*-i ->" Ek_x

where p is the homotopy equivalence given in the proof of Lemma 2.1 and

rk is induced by vp. The following follows from the fact that rak = Sik.

Lemma 2.5.   rkok~SHi¡u).

We now proceed to the proof of Theorem 1.1. Consider the homology

exact sequence

HQiE) -> HaiB) -> HqiCP) -> Hq_xiE) Hm(B) - 0

obtained from the Puppe sequence for p. We shall show that the term

HQiCP) may be replaced in a certain range of dimensions by the algebraic

one stated in the theorem.

By Lemma 2.3 we have that, for m+1 <q<n+1,

HtiC,) s* HtiC.) s ' • • SÉ HaiCP)

and the sequence

0 + H«(c^J
Lj—m—1*

> HÁC-       ) -
1^     Pq-m-I' -> HQ_2iFQ_m_2)

is exact. Since /Yi.(F3_m_1)=0 for \=k^q—2, Lemma 1.1 of [5] gives rise

to the following exact sequence

H0i<AB) ® H„_xiFQ_m_i) -> HQ_xiFQ_m_x) ^> HaiCPq_mJ —> 0.
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We see, using the lifting function of the Whitney join, that rrx(B) acts on

Hk+m(Fk) ̂  (I ® ■ ■ ■ ® I) ® Hm(F)
(4 factors)

in such a way as described before Lemma 2.4. Hence

Cok ß Sí (I ® • • • ® /) ®0 Hm(F).
(ï-m-l factors)

Combining these together yields the exact sequence

0 -> Hq(CP) - (/ ® • • • ® /) ®Q Hm(F) -+ (I ® • • • ® /) ® Hm(F)
(q—m — l factors) (q—m — 2 factors)

for m+l<Cq<n + \. Thus Lemma 2.4 implies that

Hq(Cp) Si Tor?_m_x(Z^ Hm(F))    for m + I < q < n + I.

Note that, by Lemma 1.1 of [5], the sequence

H,(ÜB) ® Hm(F) -> Hm(F) -> Hm+x(CP) -> 0

is exact, which shows that Hm+x(Cp)^Hm(F)®Q Z.

Finally let us write1 R=Hn+x(Cp) and S=Hn+2(CPi). Then, by Lemma

2.3, we have an exact sequence

S->Hn(F)-+R^Hn+x(CPi)^0
and

Hn+i(CPi) Sí Hn+x(CP) si • • • S= Hn+x(CPnm   ).

Also we have an exact sequence

" ~* "n+i(GPnm _J —*■ Hn+i(Gpnm) —*■ Hn_x(Fn_m_x).

Since the sequence

H0(ÜB) ® Hn(Fn„m) -> #„(F„_ J -* Hn+x(CPn_J -» 0

is exact by Lemma 1.1 of [5], we see that Lemma 2.4 leads to

Hn+x(CPi) sé TortjZ, HJF)).

Again from Lemma 2.3 we get exact sequences

Hn+X(ÜB * F) - S -* Hn+2(CP) -> 0,

0 -* Hn+2(CPn_J -*■ Hn+2(CPnm+i) -> Hn(Fn_m)

and

Hn+2(Cp2) = Hn+2(Cj>3) Si ' * ' S= ^n+2(CJ,ii_m).

1 In the argument which follows, we assume n>m + l. In case n=m + l, some

minor modifications will be necessary and the assertion of the theorem will turn out

to be true.
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In addition Lemma 1.1 of [5] yields an exact sequence

H0iClB) ® Hn+xiFn_m+1) - Hn+xiFn_m+1) -> Hn+2iCPn_mJ -> 0.

Hence we may infer from Lemma 2.4 that

Hn+2iC„) = Torlm+1(Z, HmiF)).

The commutativity follows from Lemma 2.5 and from the fact that the

composite SF^C^-^SE coincides with Si and that SF%CP\CPi is

essentially the Puppe sequence of o0. This completes the proof of Theorem

1.1.
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