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ON THE WEYL SPECTRUM OF A

HILBERT SPACE OPERATOR

JOHN  V.  BAXLEY

Abstract. Using the perturbation definition of the Weyl spec-

trum, conditions are given on a closed (possibly unbounded) linear

operator Tin a Hilbert space which allow the Weyl spectrum to be

characterized as a subset of the spectrum of T.

1. Introduction. Let F be a closed linear operator with domain D(T)

dense in a Hilbert space H. Let a(T) denote the spectrum of T, ir0(T) the

set of eigenvalues of T, ttoí(T) the set of eigenvalues of finite geometric

multiplicity of T, and 7r00(F) the set of isolated eigenvalues of finite geo-

metric multiplicity of T. (Here, "isolated" means isolated as points in

a(T)A Thus

iroo(T) <= 770£(F) e ttJT) c a(T).

In 1909, H. Weyl [10] investigated the behavior of the spectrum of T

under perturbation by compact operators and proved that if Fis bounded

and selfadjoint, then

(*) D {"(T + *):K compact} = a(T) - tt00(F).

For T an arbitrary closed linear operator, we denote the left-hand side of

the above equation by co(T) and call io(T) the Weyl spectrum of T.

Recently, several authors ([l]-[5], [7]) have proved that m(T) = a(T)—

7T00(T) under conditions on F more general even than normality. All these

authors except Bouldin assume that Fis bounded with D(T) = H. In [3]

and [4], Bouldin investigated several alternative definitions of the es-

sential spectrum for a closed linear operator Fand in particular gave con-

ditions under which (*) holds. In addition, he considered the effect of

replacing the concept of geometric multiplicity by that of algebraic

multiplicity.

In this note, we extend the results of [1] on bounded operators to the

unbounded case. As in [1], we continue to use the classical definition of the
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Weyl spectrum given above rather than the currently more fashionable

definition in terms of Fredholm operators. In §2, the nature of the Weyl

spectrum co(F) is investigated for an arbitrary closed linear operator T.

In §3, a hypothesis on T is formulated which implies a modified form of

(*):7T00(F) must be replaced by the set of isolated eigenvalues of finite

algebraic multiplicity. A similar result in [4] is then obtained as a corollary.

Finally, in §4, we give conditions under which (*) is valid.

I would like to record here my appreciation to Richard Bouldin for

stimulating correspondence and critical remarks.

2. Some general properties of the Weyl spectrum. Throughout this

section Fis a closed linear operator with domain £>(F) dense in a Hubert

space H.

We define the algebraic multiplicity of an isolated point X e o-(F) as in

[3]. For such a X it is known that there exists a direct sum decomposition

H=A(X)®BiX), each summand of which is invariant under T—XI; the

restriction Nx of F— XI to AiX) is bounded and quasi-nilpotent and the

restriction Sk of F— XI to BiX) has a bounded inverse defined over all of

BiX). The dimension dim A(X) of A(X) is then by definition the algebraic

multiplicity of X. If X is an eigenvalue of F, then the corresponding eigen-

space G(X) is contained in A(X) so that the geometric multiplicity dim G(X)

never exceeds the algebraic multiplicity of X.

We introduce a little more notation. Let a(F) denote the isolated eigen-

values of Fof infinite algebraic multiplicity. Then let 770£(F)=7r0£(F) —a(F)

and let 7f00(F)=7r00(F) —a(F). Thus, 7r0o(F) consists of the isolated eigen-

values of finite algebraic multiplicity.

Lemma 2.1.    o-(F)-7r0(F)<=co(F).

Proof. The simple proof given in [6, Problem 143] for the case that T

is bounded generalizes to the present situation.

Lemma 2.2.    cr(F)-7r0£(F)c:cu(F).

Proof. The proof in [1, Lemma 2] of the same result for F bounded

generalizes with no essential change.

Lemma 2.3.   r/(F)-770£(F)cCo(F).

Proof. In view of Lemma 2.2, we need only show that X e coiT) if X is

an isolated eigenvalue of infinite algebraic multiplicity but finite geometric

multiplicity. For such a X, it follows from [8, p. 240] that the range of Nx

is not closed. Hence, the range of T—XI is not closed. If X $ aÇT+K) for

some compact K, then 'T+K—Xiy1 is a bounded operator with domain

H, and so iT+K— Xiy^K is compact. The theory of compact operators
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[9, p. 279] then guarantees that I—(T+K—Xl)~lK has closed range.

Using the factorization

F - XI = [F 4- K - XI][I - (T+ K- XIA^KA,

we easily see that F— XI has closed range, a contradiction.

If F is bounded, we can give a completely elementary proof of this last

lemma, without recourse to the theory of compact operators in [9] or

[8, p. 240]. Assuming that A(X) is infinite dimensional, let {en} be an in-

finite orthonormal sequence in A (X). Suppose X $ o(T+K) for some com-

pact K; then U=(T+K—X1)~1 exists as a bounded operator on H. Let

F=(2||C/||)-1 and choose /Vj>2 so that \\Nl\\llk-^E. This can be done since

Nx is quasi-nilpotent. Letyn=(T+K-Xlfen. Thenyn=(T-XI)ken+Ven,

where F is a sum of 2k— 1 operators each of which is a finite product of

bounded operators at least one of which is the compact operator K. Thus

V is compact. By passing to a subsequence if necessary, we may assume

that y=lim Ven exists. Thus

\\yn-y\\ú\\NkeJ+Ek^2E*

for n sufficiently large. But en=Ukyn and hence

IK - Uky\\ rs \\U\\k \\y„ - y\\ ^ 2(E \\U\\f ̂  \

for « sufficiently large. Thus, if m>n,

2 = \\ej2 + \\em\\2 = \\en - eJ2

úl\\en- Uky\\ + \\Uky-em\\]2^\,

a contradiction.

If Fis not bounded, the above proof would be valid if A(X) is invariant

under K. Otherwise, the operator F might experience severe difficulties.

Lemma 2.4.    to(T)^a(T)—ñw(T).

Proof. Since w(F)c a(T), we need only show that co(T)rMr00(T)— 0 ■

Suppose X e 7r00(F). We look for a compact K for which X $ a(T+K)-

Since 1 r^dim A(X)<oo, the operator K is defined by

Kx = x,   if x e A(X),

= 0,    if x e B(X)

and extended by linearity to all of H is compact since its range is finite

dimensional. Since Nx is quasi-nilpotent, then o(Nx)={0} and it follows

easily that a(NA+I)={l}. Thus N,+I is one-to-one and onto. Since Sx

is also one-to-one and onto, it follows that T+K—XI is one-to-one and

onto. Thus, (T+K—XI)"1 is a closed operator with domain H. By the

closed graph theorem (see [8] or [9]), (T+K— XI)-1 is bounded and

X $ a(T+K). Hence X $ œ(T).
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3. Weyl's theorem and algebraic multiplicity. We use the generic

phrase "Weyl's theorem" for any theorem which characterizes a>(T) as a

subset of a(T). In this section, we give a sufficient condition that m(T)=

0(T)-7T0o(T).

Condition C-l. If {Xn} is an infinite sequence of distinct points in

7T0£(F), if lim Xn=X e -irot(T), and if {x„} is a sequence of corresponding

normalized eigenvectors, then the sequence {xn} does not converge.

We remark that Condition C-l is slightly modified from the statement in

[1].

Theorem 3.1.   If Tsatisfies C-l, then co(T)=a(T)-7r00(T).

Proof. By Lemma 2.4, we must only show that a(T)—7700(F)<=co(F)-

Now o(T)-TToo(T)=[o(T)-r}ot(T)]v[¿ot(T)-ÍT0o(T)]. By Lemma 2.3,

o-(F)-7f0£(F)cc,j(r). Since co(T) is closed (topologically),

cl(cr(F) - 7r0£(F)) c coiT).

Thus, if suffices to show that X e a>(T) if A e 7r0£(F)—7r00(F) but X$

cl(o(T)—7r0f(F)). Thus, there exists an infinite sequence {Xn} of distinct

points in Trot(T) which converges to X. Let {x„} be a sequence of corre-

sponding normalized eigenvectors. Then by Condition C-l, {x„} does not

converge. Suppose now that X $ a(T+K) for some compact K. Then

(T+K—XI)-1 exists as a bounded operator on H. Let

yn=(T+K- Xl)xn = (Xn - X)xn + Kxn.

By passing to a subsequence if necessary, we may assume j=lim Kxn

exists. Since lim Xn=X, we have lim yn=y. But then

lim x„ = lim (F + K - Xl)~1yn = (F + K - Xl)y,

a contradiction.

If A £ 770(F), Bouldin [4] says that the eigenspace G(X) corresponding

to X is not an asymptotic eigenspace if there exists a à (0<r5< 1) such that

|(x,_y)|5=<5 if x e (7(A), ||x|| = l = ||j||, and y is an eigenvector of F corre-

sponding to some eigenvalue ¡x^X. We now get as a corollary to the above

theorem a result of Bouldin [4].

Corollary. If each finite dimensional eigenspace of T is not an asymp-

totic eigenspace, then T satisfies Condition C-l and, consequently, a>(T) =

a(T)-ir00(T).

Proof. Suppose F does not satisfy Condition C-l. Then there exists

an infinite sequence {Xn} of distinct points in Trot(T) which converges to

A E TT0t(T) and a sequence {x„} of corresponding normalized eigenvectors

which converges. Let x=lim xn. Then Ax=lim A„x„=lim Yxn. Since Fis
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closed, x e D(T) and Tx=Xx. Thus, x e G(X) and clearly ||x|| = l. There-

fore, hm(x, x„)=(x, x) = l and G(X) is an asymptotic eigenspace.

4. Weyl's theorem and geometric multiplicity. We now give sufficient

conditions in order that cu(F) = cr(F) —7700(F). If Fsatisfies Condition C-l,

we already know that co(T)=a(T)—tt00(T). Thus, any condition which

implies that 7r00(F)=7r00(F) is of interest. We now consider

Condition C-2.   If X e 7r00(F), then T —XI has closed range.

We remark that Condition C-2 above assumes less than the corre-

sponding condition of [1].

Theorem 4.1.    If T satisfies Condition C-2, then 7r00(F) = 7r00(F).

Proof. It suffices to show that 7r0o(F)<=7r00(F). If A e 7r00(F), then X is

an isolated eigenvalue of finite geometric multiplicity and thus the null

space of T—XI is finite dimensional. By Condition C-2, T—XI also has

closed range. Thus, the null space of the quasi-nilpotent operator A^ is

finite dimensional and Nx has closed range. It follows from [8, p. 240]

that dim A(X)<co.

Corollary. If T satisfies both Conditions C-l and C-2, then ca(T)=

a(T)-7r00(T).

This corollary, even if T is bounded, is stronger than the result in [1].

Moreover, the results of Bouldin [3, Theorem 4 and Corollary 3] corre-

sponding to Theorem 4.1 above are proved only in the case that F is

bounded. In this case, the referee has pointed out that the condition (5)

in [3, Corollary 3] is equivalent to dim A(X)<co, which in turn is equiv-

alent (by a theorem of Kato) to our Condition C-2. Thus, [3, Corollary

3] in conjunction with [4, Theorem 3] is, at least in the bounded case,

essentially equivalent to our corollary above.

That the corollary above contains most known results is adequately

documented in [3] and [1]. However, it is known [5] that co(F) = o-(F) —

7700(F) holds for any Toeplitz operator. Although C-2 is vacuously satisfied

in this case, Richard Bouldin has shown me an example (the adjoint of the

unilateral shift on the Hardy space H2) for which C-l is violated. Thus,

Weyl's theorem for Toeplitz operators lies deeper than any of the general

theorems so far discovered.
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