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LOCAL TRIVIALITY OF FIBERINGS

SOON-KYU  KIM1

Abstract. We prove that a Hurewicz fibering or a Serre fiber-

ing is locally trivial if the total space is a connected separable

metric ANR n-gm over a principal ideal domain and the base space

is a weakly locally contractible paracompact finite dimensional

space, and all fibers are homeomorphic to a space which is a con-

nected 3-manifold with exactly one end and whose one point com-

pactification is a 3-manifold and it has no false 3-cells, in particular

a euclidean 3-space.

1. Introduction. A map p:E^>-B is a Hurewicz fiber map if p has the

covering homotopy property for all topological spaces and it is a Serre

fiber map if p has the covering homotopy property for polyhedrons. In

[10], Raymond conjectured that a Hurewicz fiber map is locally trivial

if the total space F is a manifold without boundary and the base space B

is a weakly locally contractible (wlc) paracompact space. In supporting

the conjecture, Raymond proved that a Hurewicz fiber map is locally

trivial if £ is a connected separable metric ANR (generalized) manifold

(over a principal ideal domain) and B is a wlc paracompact space and it

has a fiber which contains a compact connected component of dimension

The conjecture is false if E is allowed to have nonempty boundary or if

E is not a manifold. The latter is due to the replacement theorem of Fadell,

Langston and Tulley [8]. However, Kim extended the result of Raymond

to the case where the manifold E has nonempty boundary by imposing

more conditions on the fibering, and to the case where the fibers are non-

compact manifolds [6]. In particular, Kim proved that a Hurewicz

fibering is locally trivial if all fibers are homeomorphic to either R1 or R2

(euclidean spaces) and conjectured that a Hurewicz fibering is locally

trivial if all fibers are homeomorphic to R3.

In this paper, we settle the above conjecture of Kim affirmatively. We

actually prove a slightly more general theorem, as we have already done
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elsewhere in the case where the fibers are R2. A similar thing can be said

for a Serre fiber map. The method of proof is quite similar to the case

where the fibers are R2 [6]. We compactify the total space E along each

fiber and we use the results of Dyer and Hamstrom, namely the facts that a

homotopically 2-regular map is a completely regular map when the

dimension of fibers is low and a completely regular map is locally trivial

when the dimension of fibers is low ([2], [4], and [5]).

In [7], Kim also extended the Dyer and Hamstrom result that a com-

pletely regular map is locally trivial to the case of higher dimensional fibers.

However, we cannot extend our present result to the case where the fibers

are Rn (zz>3) because we do not know how to go by the first result of

Dyer and Hamstrom to the case where the dimension of the fiber is big.

2. Construction. Let p:E-*B he a Hurewicz fiber map from a con-

nected separable metric ANR zz-gm E over a principal ideal domain onto a

wlc paracompact finite (covering) dimensional base space B. By a general-

ized zz-manifold (zz-gm) we mean what Wilder and Raymond call a (locally

orientable) cohomology zz-manifold (see [10] and [14]). Suppose that all

fibers are homeomorphic to a space M, where M is a connected 3-manifold

with exactly one end (see [11] for definition) and whose one point com-

pactification is a 3-manifold. We note that B is necessarily 0-connected

and is a separable metric ANR [3], and B is also locally compact because

£ is locally compact and the mapp:E->B is open [3].

Let £ he the disjoint union of E and the product space B x {0}. We

definep:£—>-B by p(e)=p(e) for each ee Fand p(e)=b for each e—(b, 0) e

Bx {0}. We give a topology ^ on £ in the following way: Let °U be the

collection of all open sets of £. Let W be an open set of B such that p

admits a cross section / on W; furthermore there exists a closed subset

W0 of p"1(W) such that the closure of W0 in £ is compact and rV0=>f(W)

and W/0n/7~1(zj)) is compact in p^(b) for each b eW. To see that such

Wand ¡V0 exist, we use the local contractibility of B and a fiber homotopy

equivalence between p~1(W) and W'xp"1^) where b0e W and W

is an open subset of B which is uniformly contractible in B (see [6, p. 59]

for details). There are infinitely many such pairs (W, W0), W3 b, for

each point b e B. The collection of all such pairs for all b e B will be

denoted by %'. Let ■f' be the collection of sets of the form p-\W)- W0

for each (W, W0) e <£, and let V be the collection of all subsets V of Ë

such that VC\E is open in £ and VC\(Ë—E)¿¿0, and for each xe

Vr\(Ë—E) there exists an element V e'f' such that xeV'^V. Then

any element V oí y is an element of y (see [6]). Now let tf¿ denote the

collection of all elements of °ll and "T. Then it is easy to see that ^ is a

topology on £. Henceforth £ denotes a topological space with the topology
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2.1. Lemma, (i) The map p:E-^-B is continuous and open,

(ii) the subspace B X {0} of £ is homeomorphic to B,

(iii) the space £ is a locally compact Hausdorff space,

(iv) the space £ is a topologically complete metric space,

(v) the space j?_1(A)> °s a subspace ofE, is the one point compactification

of p_1(b) for each b e B, hence p^(b) is a compact 3-manifold with added

point as its interior point,

(vi) the map p : £—>-/? is a proper map.

Proof. Some of these properties are direct consequences of the

definition of the space £ and the map p : E-^-B and nontrivial facts were

proved in [6, p. 60] (see also [12]).

We recall here the definition of the homotopic «-regularity of a map.

A map / from a metric space X onto a metric space Y is homotopically

«-regular if it is open and proper and if for given x e X and £>0 there

exists <5>0 such that each mapping of a /c-sphere Sk, k^n, into S(x, ô)(~\

f_1(y), y e Y, is homotopic to a constant map in S(x, e)r^f~1(y), where

S(x, e) is the e-neighborhood of x.

2.2. Lemma.    The map p:£—>-B is homotopically 2-regular.

Proof. By (2.5) of [10],/r.£->-.ß is a homotopically 2-regular map with-

out assuming the properness. Therefore, it suffices to verify the conditions

of the homotopic 2-regularity of p on the points in £—£. But this

follows by our definition of the neighborhood systems of points in £—£

which are defined "fiber-wise" in a sense. More specifically, let a

point x 6 (E—E) and e>0 be given. Since S(x, e) is open in E, it contains

an element Kef" which is an open neighborhood of x such that V=

p-^ ( W) -W0 for an element (W, W0) etf, where p(x)eW. Since p-\p(x))n

V is open in p~1(p(x)) and x is an interior point of a 3-manifold by

Lemma 2.1, there exists a closed 3-cell Dx of a positive diameter around x

in p~1(p(x)) such that Dx<^ V; i.e., Dx=S(x, a)C\p-1(p(x)) where a is a

number. Furthermore, Fis an open neighborhood of y=p-1(c)n(£—E)

and ^_1(c)nFis open in />_1(c) for each c e W. Therefore, we can find a

neighborhood U of x in £—£ so that for each y e U, there exists a closed

3-cell Dy around y in p~1(p(y)) whose diameter is bigger than some

number a>0 and D„<= V. If a is once chosen we may as well assume that

the distance from x to the frontier of U denoted by d(x, Fr(U)) is less

than a/4 by changing U if necessary. Now since p(U) is again open in B,

d(x, p~1(p(Fr(U))))=ß is nonzero. Take ô to be the minimum number of

ß and a/4. Then the open neighborhood S(x, ô) of x is contained in the

union of all Dv,y e U, hence in V. For if z g S(x, ô) then d(x, z)<o^ß.

Therefore,  first  of all  zep-1(p(U));  i.e.,  p-1(p(z))n(£-E)=y e U.
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Furthermore, d(y, z)^d(y, x) + d(x, z)<a/4 + a/4 = a/2, and hence ze

Int(D,).
Then if 5(x, o)n/?_1(c) is nonempty, any map g:Sk->-Six, ô)C\p-1ic) is

homotopic to a constant map in S(x, e) for all k since S^x, ¿))n^"1(c)<=

Int(Fyc: Va Six, e) and F»,, is a 3-cell, where j e (£-£) with piy) = c

inB.

We know that p is an open and proper map by Lemma 2.1. Therefore p

is a homotopically 2-regular map (in fact, zz-regular).

We prove another lemma which is independent of the above construc-

tion.

2.3. Lemma. Let M be a 3-manifold whose one point compactification

M+ is again a 3-manifold. If all homotopy 3-cells in M are 3-cells then all

homotopy 3-cells in M+ are 3-cells too.

Proof. It suffices to consider a homotopy 3-cell D in M+ such that

x G Int(D). Choose an arc A from x to a point of the boundary of D,

and a nice tabular neighborhood N of the arc A which is a real 3-cell. Then

D—Int(7V) is a homotopy 3-cell in M. Therefore, D — lntiN) is a real

3-cell. On the other hand, there is an isotopy of D keeping all of it fixed

except for a neighborhood of N so that D — Int(A0 image is D itself;

i.e., D — Int(A) is homeomorphic to D itself. Therefore D is a real cell.

3. Main theorems.

3.1. Theorem. Let p:E-^-B be a Hurewicz fiber map from a connected

separable metric ANR n-gm E over a principal ideal domain onto a wlc

paracompact finite (covering) dimensional base space B. Suppose that all

fibers are homeomorphic to a space M where M is a connected 3-manifold

with exactly one end and whose one point compactification is a 3-manifold

and all homotopy 3-cells in M are 3-cells. Then the fibering (E, B, p) is

locally trivial. IfB is contractible then it is a product fiber space.

This theorem implies our original problem as a special case.

Corollary 1. Let p.E-^-B be a Hurewicz fiber map from a connected

separable metric ANR n-gm E over a principal ideal domain onto a wlc

paracompact finite (covering) dimensional space B. If all fibers are homeo-

morphic to R3, then the fibering (£, B, p) is locally trivial. IfB is contractible,

then it is a product fiber space.

Proof of Theorem 3.1. We note again that B is necessarily 0-connec-

ted, locally compact, separable metric, and ANR. Let £ be the disjoint

union of £ and the product space B x {0} and p : Ë^-B be defined by p(e) =

p(e) for each e e E and p(e)=b for each e=(b, 0) e Bx {0}. Let ¥ be the
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topology for £ that is defined in §2. By Lemma 2.1, £ is a topologically

complete metric space. Therefore there exist a complete metric space £'

and a homeomorphism « between £' and £. If we define a map p':E'^>-B

to be p- h, then it is a homotopically 2-regular map from a complete metric

space £' onto a finite (covering) dimensional metric space B such that each

inverse under p is homeomorphic to a compact 3-manifold with boundary

by Lemmas 2.1 and 2.2. Since each fiber p~l(b) has no homotopy 3-cells

which are not real 3-cells, the space p~l(b) that is the one point compacti-

fication of p~x(b) has no homotopy 3-cells which are not real 3-cells

by Lemma 2.3. Therefore by (6.1) of [4], p':E'-+B is locally trivial.

That is, for each b e B, there exist an open set U of b in B and a

homeomorphism h'v: Uxp'-x(b)-+p'~x(U) such that the diagram

h'u
U x p'~x(b)->p(U)

p'\v-HU)

U

commutes, where -n is the projection map. Then the commutative diagram

below gives us a trivialization of p\xj:p~~x(U)-+U:

U x h-\p-\b)) >h-\p-\U))-   -+P-KV)

Therefore p:E—-B is locally trivial. From this fact we can conclude that

/?:£—>-.ß itself is locally trivial. Since the proof of this is exactly the same

as the one of the case where the dimension of the fiber is two [6, p. 63],

we only give a sketch of the proof rather than a detailed proof.

Let

h
U x F-> p~x(U)

P\,r HU)

U

be a local trivialization of p:E~>-B, where Fis the fiber. Suppose the image

of Ux (F—p~x(b)) under h is not equal to p-x(U)—p~x(U). (If it is equal,

then nothing is to be done.) Define/: U^-UxF by f(c)~(c, x0), ceU,

Xtx=F-p~x(b), and g:U^p~x(U) by g(c)=p-x(c)-p-x(c), ceU. Then

h~xg: LZ-of/xFis different from/. We find an open set Fin U and a fiber
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preserving homeomorphism cf>:Vx F-^-Vx F such that<f>(h~1g(V))=f(V).

Here we use the fact that the group of homeomorphisms of an zz-disk Dn

fixing dDn and an interior point pointwise is locally contractible for all

zz [1]. Then

h'=h\VXF
V X F—    —► p~liV)

P\p-HV)

commutes. Therefore, h'<fri\iVxF,fiV))-+iVY.F,h-1giV))-+ip-iiV),

g(*0)=(F_1(JO> P^i^—p^iV)) is a homeomorphism. Hence hy—

A'^-1Ifxî'-fx(î5-1(W-d-1(*)) 's a homeomorphism such that the diagram

hv
V x pr\b)->p~1(v)

-MF)

commutes. This is a local trivialization of the map p:E->B. The last

statement of the theorem is a result of the general bundle theory.    Q.E.D.

We state an analogue theorem in Serre fibering.

3.2. Theorem. Let p:E—>-B be a Serre fiber map from a connected

separable metric ANR n-gm E over a principal ideal domain onto a wlc

paracompact finite Covering) dimensional base space B. Suppose that all

fibers are homeomorphic to a space M where M is a connected 3-manifold

with exactly one end and whose one point compactification is a 3-manifold

and all homotopy 3-cells in M are 3-cells. Then the fibering (£, B, p) is

locally trivial. If B is contractible then it is a product fiber space.

Proof. By Theorem 2 of [9], p is homotopically zz-regular; then by

Ungar's theorem [13], p is a Hurewicz fiber map Therefore the local

triviality of the map follows by Theorem 3.1.
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