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ON  TOPOLOGICAL PROPERTIES  OF  SETS

ADMITTING  VARISOLVENT FUNCTIONS

D.  BRAESS

Abstract. Mairhuber's theorem on Haar subspaces is general-

ized for the nonlinear case, where varisolvent functions are

considered.

1. According to a well-known theorem of Mairhuber [4] a compact

set in RN is homeomorphic to a subset of a circumference T, if it admits a

real Haar subspace with dimension N^.2. This result has been proved for

general compact spaces by Curtis [2] and by Sieklucki [7]. A first extension

of Mairhuber's theorem to nonlinear families of functions was given by

Dunham [3]. In this note we will derive a stronger result.

Theorem 1. Let the compact set Q admit a varisolvent family of func-

tions. If the degree of so hence is bounded and if the maximal degree is

greater than 1, then Q is homeomorphic to a subset of a circumference Y.

Moreover, if the degree is an even number at some element, then the subset

must be proper.

As a consequence of this theorem it is natural to consider varisolvent

functions only on intervals in R. This is the specialization used throughout

the literature. The principal part of the proof will treat the case where the

degree n is 2. Afterwards, the induction for n>2 proceeds as in the

proofs for linear families presented in [6], [8, p. 218].

2. We define varisolvent functions on a compact set Q. Let the real

function F(a, x) be defined for x e Q and a eP, where P is the parameter

space [5]. For all a eP we assume F(a, •) 6 C(Q), but there is no need to

endow P with a topology.

Definition, (i) F has Property Z of degree m at a* e P, if for any

a^a*, F(a, x)—F(a*, x) has at most tn—l zeros for x e Q.

(ii) Fis solvent of degree m at a* eP if given a set of m distinct points

Xj e 2,7=1, 2, • • • , m, and £>0, then there exists a

ô = ô(a*, s, x1; x2, • • • , xj
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such that |F(a*, x3-)—_y3-|<ó implies the existence of a parameter a e P,

satisfying

(1) F(a, x3) = y},       j = 1, 2, • • • , m,

as well as ||F(a, -)—F(a*, -)|| <e.

(iii) F is varisolvent if F possesses both the properties (i) and (ii) with

the same degree for each a e P.

At first we prove

Lemma 2. Let Y be a circumference and q a point outside V. If Fia, x)

is varisolvent on T iresp., on YKJ{q}), then the degree of solvence is odd

iresp., at most 1) at each a e P.

Proof. Let zzz=zzz(a*) be even. Select m distinct points x¡ e Y in

cyclic order. For sufficiently small <5>0 there exists a solution of

(2) Fia, x,) -yt,       i = 1, 2, • ■ ■ , zzz,

where yi=F(a*, xt)+(—iyô. Obviously, F(a, x) — F(a*, x) has m zeros

on T, contradicting Property Z. This completes the proof for the state-

ment on r. Concerning Y*J{q}, the statement for even m is a consequence

of the preceding one. It is sufficient to consider odd degrees m=m(a*).

Here, select zzz—1 distinct points x{ e Y in cyclic order. Define v,-, z'=

1, 2, • • -, m— 1, as above and set j0=F(a*, q). Then the solution of

Fia, x)=y(,       i = 1, 2, ■ • • , m — 1,

Fia, q) = yo

yields a contradiction to Property Z.    D

3. Before proving the main theorem we will recall the linear case. Let

«i, zz2 be a base of a two dimensional Haar subspace. Then

x->{¡/i(x), w2(x)}

defines an injective continuous mapping of Q into the real projective line.

This mapping was considered in [8, p. 221]. If u2(x) has no zero in Q, we

may use the mapping cp:Q—>-R which sends x to Uiix)/u2ix). We may even

abandon the assumption on zz2(x). By virtue of a lemma of Schoenberg

and Yang (to be mentioned below) it is only necessary to present a map-

ping of Q\Uinto Y for each open set £/<=(?. Forgiven Uchoose a function

«2 without zero in Q\U. Moreover, cp may be defined by the relation

ç9(x)-zz2(x)=zz1(x). This concept will be translated to the nonlinear case.

4. Proof of Theorem 1. Let F be a varisolvent function on Q. We

shall proceed by induction on zz, the number of maximal degree of

solvence. Choose a* e P with zzz(a*)=zz. Observe that the translation
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F(a, x) = F(a, x)—F(a*, x) generates a function F, which has the same

degrees of Property Z and solvence as F and which is also varisolvent.

Thus we may assume F(a*, x)=0 without loss of generality.

At first let w=2 and let U be an arbitrary nonvoid open set in Q. Select

qx e U and q2 e M: = Q\U. From the definition of solvence we know that

there exists a <5>0 and a mapping from the unit square in R2 into C(Q):

(4) (yi,y2)-E(a(yi,y2),-),

such that

F(a(yi, yù, qù = <5 -yt,     » = 1 > 2.

Since m(a*) is maximal, it follows from Property Z that the mapping is

uniquely defined for fixed <5. By virtue of Theorem 1 in [1] the mapping is

continuous.

For —l^t^ + l set at=a(0, t). Obviously, we have F(a0, -)=F(a*, ■)

and F(at, qA=0. Hence, m(aA = 2 and Property Z implies

(5) F(at, x) * F(as, x) ■£ 0,       xeM,

for all s, t e[—l, +1], s^t^O. Since Mis compact, it follows that

(6) min min{\F(au x)|, \F(a_x, x)|} = r¡ > 0.
xeM

Furthermore, from the solvence property at a* we conclude that there

exists a parameter b e P such that

(7) F(b,qA*0

and

(8) \\F(b, -)|| < r¡.

Now we are ready to define a mapping cp: M—>-[— 1, +1] by

(9) F(a„M, x) = F(b, x),       xeM.

We claim that the mapping is well defined. Indeed, by virtue of (4), (5)

and (6) we have

F(ax, x) ^ r¡   and   F(a^, x) ^ — r¡,

or

F(a_1, x) 5; 7]   and   F(a1, x) r£ — r¡,

for each xeM. Hence, for each xeM the relation F(at, x)=F(b, x)

holds for at least one r e [—1, +1]. By virtue of (5), this value is unique.

Furthermore, <p is injective. If <p(x1) = cp(x2) = t, then F(a(, -)—F(b, ■) has

two zeros, which implies F(at,A — F(b,-), contradicting F^,^)^

F(at,q1)=0. Finally, from the continuity of the mapping [—1, 4-l]x

Mb (t, x)->-F(at, x)—F(b, x), from compactness, and from the injectivity
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of cp, we conclude that cp is continuous. Hence, M=Q\U is homeo-

morphic to a subset of R or a subset of Y. Since this holds for each open

set U, from Lemma 1 in [6] (the same as Lemma 2.4 in [8, p. 219]), we

obtain that Q can be homeomorphically embedded into Y, or Q is homeo-

morphic to a union of Y and a single point q <$ Y. The second case is

excluded by virtue of Lemma 2. Thus, the statement for zz=2 is established.

Now, let zz>2. Assume that Theorem 1 is true for zz—1. Let U be an

arbitrary open set in Q. Choose q e U and a* e P with zzz(a*)=zz. Set

P' = {aeP:Fia, q) = Fia*, q)}.

Obviously, Fia, x) is varisolvent for x £ Q\Uand a eP'. By this restriction

the degree of solvence is reduced by one for each a e P'. Since a* eP', the

induction hypothesis assures that Q\U is homeomorphic to a subset of Y.

By the same arguments as those used for the case zz=2, the proof of the

theorem is completed.    □
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