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BALANCED AND QF-1 ALGEBRAS

V.  P.  CAMILLO AND  K.  R.  FULLER1

Abstract. A ring R is QF-1 if every faithful module has the

double centralizer property. It is proved that a local finite di-

mensional algebra is QF-1 if and only if it is QF. From this it

follows that an arbitrary finite dimensional algebra has the property

that every homomorphic image is QF-1 if and only if every homo-

morphic image is QF.

Throughout the following all rings are associative and have identity,

all modules are unitary and all algebras are finite dimensional over a field.

If M is a module over a ring R, we write End(M) to represent its set

of /?-endomorphisms viewed as a ring of operators on the opposite side

of M. Then M is an End(M)-R bimodule, and calling its ring of End(M)

endomorphisms Bi End(M), there is a natural ring homomorphism

R—>Bi End(M) via rH->multiplication by r. If this ring homomorphism is

surjective the module M is said to be balanced, or to have the double

centralizer property.

After proving, with C. J. Nesbitt, that every faithful module over a

quasi-Frobenius (QF) algebra is balanced [15] (a fact now well known

for QF rings (see, for example, [2, §59])), R. M. Thrall gave an example

of a ring over which every faithful module has the double centralizer

property which is not QF [16]. He called the above rings QF-1 rings and

posed the problem of characterizing them in terms of their ideal structure.

Thrall's problem is still unsolved, even for algebras, though various

partial results may be found in [1], [3], [5], [6], [10].

Here, we offer a solution to a modification of Thrall's problem posed

in [1] and [3]. A ring is balanced in case all of its modules (faithful or not)

are balanced. It is our intention to prove that an algebra is balanced if

and only if it is in fact a uniserial algebra in the sense of Koethe and

Nakayama [13]. Thus we verify, for algebras, a recent conjecture of

J. P. Jans [8] (cf. [7, Remark (d)]) and extend his theorem that a balanced
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algebra over an algebraically closed field is uniserial. In addition, we

offer another partial solution to Thrall's problem: every primary decom-

posable QF-1 algebra is QF.
A ring is balanced if and only if each of its factor rings is QF-1. A

ring is uniserial if and only if each of its factors is QF. Thus, uniserial

rings are balanced, so that the converses to both theorems are well

known to be true.

The problem is already reduced to the extent that we may assume that

our algebra is local (i.e. a division ring modulo its radical). To see this,

first recall that all the properties under consideration are preserved under

finite ring direct products and summands (see [5] and [13]). Moreover,

there are any number of ways to see that "uniserial" is a Morita invariant;

and an unpublished theorem of K. Morita and H. Tachikawa [12] tells

us that QF-1 and balanced are also. In particular, Rn [nxn matrices

over R] is balanced or QF-1 if and only if R is. This fact, together with

the fact that every balanced semiprimary ring is a product of matrix rings

over local rings ([7], [8]) tells us that we may assume our algebra is

local.

In what follows we denote the Jacobson radical of a ring R by J, and

the right and left socles by Soc RR and Soc RR. Since we will be working

in an artinian ring, the right and left socles are the left and right annihilators

of the radical, respectively. We note that if we limit ourselves to finitely

generated modules the left and right QF-1 and balanced rings are the

same. This is because if R is a Kalgebra, where Kis a field, then

Bi End M «* Bi End(A/*)

where M* denotes the K dual of the finitely generated module M.

We prove three lemmas, and then our theorems. The first of these

requires the use of Lemma 11 of [1]. Let A and B be modules; define

TiA, B)=2 {Im/|/e UomR iA, B)}. This lemma states

If A = ^ieI©Ai is a direct sum of right R modules, and {r( | i e I}<=R

then the map given by 2 a¿^"2 airi e 2 ®A{ belongs to Bi End M if

and only if T(At, Aj)(ri — rj)=0for all i,j e I.

We now prove our first lemma.

Lemma A. Let R be local and right QF-1, and suppose s and t are

nonzero elements of Soc RRC\Soc RR, then R/sRinR/tR as right R modules.

Equivalently, there are units u and v in R such that us=tv.

Proof. The fact that R/sR^R/tR if and only if there are units u and

v such that us=tv is straightforward.
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Now, suppose R/sR^R/tR. Then, since sR and tR are minimal right

ideals we must have sRiMR=0. In particular, RlsR®R/tR is a faithful

module. Let A1=R/sR, A2=RjtR, and A3=Rj(s+t)R. Then, since Ax

is not isomorphic to A2 we may, by interchanging s and t if necessary,

assume that A2 is not isomorphic to A3. Consider the map defined by

(au a2, a3)y = (a1-0, a2 s, a30). We claim that is is a Bi Endomorphism.

To do this, we apply Lemma 11 [1]. Since A2 is not isomorphic to A3,

we have T(A2, A3) c I/(s+t)R. If this were not true, we would be able

to find a unit u, such that ut=(s+t)v, and since (s+t)J=0, v would

necessarily be a unit and we would have A2mA3. Similarly, T(A3, /í2)c:

JjtR, T(A2, AJ^J/sR and T(AU A2)<=J/tR. These are the only cases

that involve a nonzero multiplication in the verification of the conditions

of Lemma 11, and in these cases we will be multiplying by +s. Since

s e Soc RR, we have Js=0, so the map defined is a Bi Endomorphism.

Thus, this map must be given by right multiplication by an element

r e R. Now the map y is not zero since (0, \ + tR, 0)y = (0, s+tR, 0) and

sRiMR=0, thus r^O. But since r annihilates A1 and A3 we have r=su and

r=(s+t)v, where u and v are units. Thus, su=(s+t)v or, s(v—u)+tv=0,

whence tv=0 since the sum sR+tR is direct, or i=0, a contradiction, and

the lemma is proved.

Note that this lemma is true under the sole hypothesis of right QF-1

and local.

To prove our next lemma we recall that if / is a right ideal in a ring R,

and B={b e R | è/c/} then End(R/I)R s& B\I where the right side makes

sense because / is a two-sided ideal in B.

Lemma B. Suppose R is a local right QF-l ring with radical J and that

0¿¿s eSoc RRr\SocRR. Let B={b e R\ bs e sR}. Then the radical of

B=J, and B¡J is a division subring of RjJ such that the dimension of R/J

as a left vector space over BjJ is at most 2.

Proof. Is=0 and inverses of units in B belong to B, so I^B and is

clearly the radical of B. If B=R we are done, so we may assume that

there is a unit u e R such that us is not zero and usRdsR=0. Now if the

conclusion fails we can find left B modules X and Y such that R/I=

B¡I®X¡J® Y/J, as left B\Jmodules. Let 5=Soc ^nSoc RR. Then JS=0,
and us e S. Thus, S/sR is not zero and S and sR are both left B\J modules.

Then, since B/J is a division ring we can find a map o1.R¡J^>-SlsR such

that (B¡J®X¡J)61=0 and (Y/tyô^O. Preceding ^ by the canonical map

ô2:RlsR^-R/J we obtain a nonzero B map o-.R/sR-^-R/sR with

((B+X)/sR)o=0. Thus, ô e Bi End R¡sR so, by hypothesis, ô must be right

multiplication by some nonzero r e R. But then, (B+X)r<^sR. In particu-

lar, 1 • r e sR and since r^O, rR=sR. But then if x e X we have xr e sR,
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or x(rR)=rR. From this we have x(sR)=sR, or x £ B, contrary to our

choice of x.

Our final lemma requires the use of the field K. In this lemma at least,

its only purpose is to permit the use of a dimension argument.

Lemma C.2 IfR is a local QF-l algebra over afield K then 5= Soc RRr\

Soc RR is simple both as a left and a right R module.

Proof. Let S=Soc RRnSoc RR, and let O^s e S. It is enough to

prove that sR is a two-sided ideal. For, if O^t e S then R/tR^R/sR by

Lemma A so that there are units u and v such that ut=sv; but then

t=u~1sv £ sR, and counting dimension we have tR—sR and Rt=sR=Rs.

Now let s £ S, and let B be as in Lemma B and Bx = {r e R | sr e Rs};

Bx is the opposite-sided counterpart of B. If either B or Bx is all of R

we are done, for if B=R by the above remarks the conclusion holds, and

if Bx = R, then Rs is a two-sided ideal, and hence contains sR. But then,

by dimension, sR=Rs and sR is a two-sided ideal. So, we may assume

Bx¥"R and B ?¿ R. We will then show that BX\JB=R and arrive at a standard

contradiction.

By Lemma B, we have that RjJ has left dimension equal to 2 over B\J,

and since we are over a finite dimensional algebra and B is a subalgebra,

we have that RjJ has dimension 2 over B/J on the right also. Now let

p e R be such that ps $ sR. Then p ^ B so R=pB+B. Then p is a unit,

and 0?¿ps+sp e S. By Lemma A, we can choose units u and v such that

us=(ps+sp)v. Now write u=pbi+b2, bx,b2eB, and let ¿>1i=jr1 and

b2s=sr2. Then we have

(pi + sp)v = »5,       />st> + spv = (pel + b2)s = psrx + sr2

or, 0=ps(rx—v)+s(r2— pv).

Now, the sum psR+sR is direct, so that psrx=psv and sr2=spv. But

since p is a unit we have sv=sr1=b1s¿¿0 so that />! is a unit and ot_1 =

bx's.

Now, using the second equation and the calculations from the first,

we have

sp = sr2v_1 = b2sv_1 = b2b1~1s £ Rs.

2 (Added October 13, 1971.) The two main theorems of this paper have been

obtained independently by V. Dlab and C. M. Ringel. Their results are stated with the

hypothesis "R is artinian and finitely generated over its center C" in place of "R is a

finite dimensional algebra over a field K". Since a local ring R satisfying their more

general hypothesis has R/J finite dimensional over the field (C+J)/J, the proofs of

this lemma and the following theorems show that (as Dlab and Ringel state) if R is

such a ring then (1) if 7? is right balanced then R is uniserial; and (2) if R is local and

left and right QF-1 then R is QF. (They also have shown that balanced rings are artinian,

but need not be uniserial.)
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Thus, if p $ B then p e Bx. This says that R=BKJBV They both contain

J, and if we let b e B—B1 and bx e Bx—B, where b and b1 are units, then

bbï1 is a unit not contained in either. (It is an old chestnut that a group

cannot be a union of two proper subgroups.) This proves the lemma.

We are now ready to prove our theorems. Note that Theorem 1 follows

from Theorem 2, but we have chosen to isolate it because there is a

reasonable chance that the argument given here is extendable to artinian

rings. See the remark after Theorem 2.

Theorem 1.    Every balanced algebra is a uniserial algebra.

Proof. As discussed in our introductory remarks, we may assume

that R is local. Since Rad R=J is nilpotent there is a largest integer n

such that Jn^0. But then Jn^Soc RRC\Soc RR is left and right simple

by Lemma C. In fact, applying Lemma C to each of the QF-1 algebras

R/Jk+1 we see that IkIJk+1 is left and right simple for k=l, ■ ■ ■ , n. Thus

the lattices of one-sided ideals in R are chains [13], so R is uniserial.

Theorem 2.    Every primary decomposable QF-l algebra is QF.

Proof. Again we may assume the A' algebra R is local. A local algebra

is QF if either its left or right socle is simple. If, say, Soc RR is simple,

then RR imbeds in RR, the K dual of RR which is injective and has the

same K dimension as RR (see [2, §60]), so RR is injective, since RR = RR.

Now, according to Lemma C, if Soc RR<^Soc RR the former is simple.

So let us suppose that this is not the case. Then we have x e Soc RR such

that yx^O for some j e /= Rad R. If R/jxR^R/xR there are units u

and v in R such that ujxv=x. But then, for every n we have (uj)nxvn=x.

But this is impossible since uj eJ and / is nilpotent. Thus, R/jxR is not

isomorphic to R/xR so we can apply [1, Lemma 11] (see Lemma A) to

see that if Jc=0, then

(a + jxR, b + xR)ô = (ac + jxR, b0 + xR)

belongs to Bi End(RljxR©R/xR). By hypothesis there is an r e R such

that R(c—r) ejxR and Rr^xR. Now, if r^O by dimension Rr=xR and

xR would be a two-sided ideal, contradicting the fact thaty'x £ xR.

Thus, r=0 and for every c e Soc RR, c ejxR. Thus, Soc RR=jxR by

dimensionality, and Soc RR is simple on the left since jxR is simple on

the right. This completes the proof.

Remark. As noted in the introductory comments, Theorem 1 is

really a consequence of Theorem 2. However, we chose to prove it

independently in order to stress the point that our use of the finite

dimensionality of R over A'may be possible to avoid. Indeed, if one could
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find an element S e Soc RRC\Soc RR for which B=Bi in the proof of

Theorem 1, one would be able to complete a proof that semiprimary

balanced rings are uniserial.
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