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A NOTE ON PAIRED FIBRATIONS

PATRICIA TULLEY McAULEY1

Abstract. Consider pairs (SC, si) where %=(X, p, B) and s/=

{A,p\A,B) are Hurewicz fibrations mapping onto B and A<=X.

It is proved that (%, ¿¡/) is a cofibration if and only if {3C \jt <3f, <&)

is a strongly-paired fibration for each fibration <&=(Y, q, B) and

fiber map/: j¡/-*&. It follows as a corollary that the notions of fiber

homotopy equivalence and strong fiber homotopy equivalence [5]

coincide for all Hurewicz fibrations. That {3C, sf) be "strongly-

paired" requires more than that each lifting function for sf be

extendable to 3C. This and other notions of pairing are studied.

1. Introduction. Throughout this note fibration will mean Hurewicz

fibration with map onto the base space. All spaces are assumed to be

Hausdorff. Suppose that A e X, that each of #"= [x,p, B),Jnf=iA,p\A,B),

and ®' = (F, q, B) is a fibration and that/:s/-*<W is a fiber map. We let

3C \J fë=<X\j fY, p*Jfq, B), where \Jf denotes adjunction of spaces and

maps. Is SCKjfê a fibration? That is, do certain weak pushouts exist for

Hurewicz fibrations? It is known [1] that the answer is yes provided that

<3b"', s/) is a cofibration and si is a subfibration of 3C in the sense that

there is a lifting function for sí which can be extended to a lifting function

for SC.2

In this note we obtain a stronger result and its converse. Specifically,

we define strongly-paired fibration and show that for fibrations 3C and si

as above : i?£, s/) is a cofibration if and only if iSdKJfty', <W) is a strongly-

paired fibration whenever °T/ is a fibration andf:sé^& is a fiber map.

We use this result to show that the notions of fiber homotopy equivalence

and strong fiber homotopy equivalence coincide for all Hurewicz fibrations.

Thus, we answer a question raised in [5].

2. Notation and definitions.

Suitable paths. A subset S of B1 is said to be suitable provided that

it is closed under certain convenient "operations." Precisely, for weB1
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and îE/we define cos and cos in B1 by

co*(t) = co(s + (1 — s)t),       cos(t) = co(s(l — /)).

Then the set S is suitable if and only if cos and cos are in S whenever

sel and co e S.

Pairing. For any S—(E,p,B) where p maps E onto B and any

subspace S of 5r we let Q(E, S)={(e, co) e Ex S\p(e) = œ(0)}. A

lifting for Í¿(F, S) is a map A:Q(F, S)^-ET such that the "usual" lifting

properties X(e, co)(0)=e and/? o X(e, to) = co hold. It is trivially true that

S is a fibration if and only if each Í2(F, A) has a lifting. Now, we say

that (3t~, sé), as above, is a paired fibration if and only if for each suitable

S there is a lifting for ÜL4, S) which can be extended to a lifting for

iiLY, S). It is obvious that this is equivalent to saying 9C is a fibration

and sé is a subfibration. We say ($", jaf) is a strongly-paired fibration

if and only if sé is a fibration and, for each suitable 5, each lifting for

QL4, A) can be extended to a lifting for D.(X, S).

It will be important to know that for a fixed base space B and fixed

suitable S the operation of forming 0( , S) commutes with that of forming

adjunctions. Precisely, there is a natural homeomorphism between

Q.(X\JfY, S) and Q.(X, S)u; D.(Y, S), where f:Q.(A, S)^Q.(Y, S) is
defined by f(a, co) = (f(a), co).

Generalized liftings. It is easy to show that if X:C1(E, S)-»A7 is a

lifting and S is suitable, then there is a generalized lifting A which extends

X. That is, if we let Q.*(E, S)={(e, co, s) e ExSxl\co(s)=e} then there

is a map A:Q*(F, S)^-Ez such that A(e, co, s)(s) — e, pA(e, co, s) — co and

A(e, co, 0) = X(e, co). This fact is well known for S—B1 [2] and the same

proof will work for any suitable S.

Cofibrations. With ¡X and sé as in the introduction we let 2£xl

denote (Xxl,p ° ttx, B) and $~ denote (T, p ° ttx\T, B) where T=Xx

{0} kjA x I. We recall that (%', sé) is a cofibration ([3], [5]) if and only if

there is a fiber map p : 3£ x l-+3~ such that pisa retraction of X x I onto T.

3. Main results and proofs.

Theorem 1. Suppose that A<=X and that each of 3C=(X,p,B) and

sé=(A,p\A, B) is afibration. Then, in order that (3C, si) be a cofibration

it is necessary and sufficient that (3£\->f &, (&) be a strongly-paired fibration

whenever ^—(Y, q, B) is afibration andf:sé-^lW is a fiber map.

Corollary 1. If' (3L', sé) is a cofibration of fibrations, then (%', sé) is

a strongly-paired fibration.

Corollary 2. If f:3C^W is a fiber map of fibrations over B and

F:9L'x{0}->^ is defined by F(x,0)=f(x), then the mapping cylinder

SExlKJpty is afibration.
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Theorem 2. Any two fibrations over B are fiber homotopically equivalent

if and only if they are strongly fiber homotopically equivalent.

Before proving Theorem 1 we remark as follows upon the other results :

Corollary 1 follows from Theorem 1 when we observe that (3f, sé) is

of the form (.fu,1^, <&). Corollary 2 is a consequence of the fact that

iS£xI,3£x {0}) is a cofibration.

Regarding Theorem 2, we recall that two fibrations J^0 and !FX over B

are said to be strongly fiber homotopically equivalent if and only if there

is a fibration ^ over Bxl such that m\Bx{/} is equivalent to ^ for

z'=0, 1. Theorems 4 and 10 of [5] imply that fiber homotopically equivalent

J% will be strongly fiber homotopically equivalent provided the mapping

cylinder determined by a fiber homotopy equivalence f:^ü-*iFL is

always a fibration. Corollary 2 says this is the case.

Proof of Theorem 1.

Special Case of the Necessity (Corollary 1). If (9C, A) is a co-

fibration, then iSt', A) is strongly-paired.

Proof. Using previous notation we suppose that p:!XxI-*-3~ is a

retraction map. Also suppose that (¡>:X^>-I is a map such that <z>(x)=0 if

and only if x e A and <£(x)<l implies TTxpix, 1) e A. It is known that

such a cp can be defined, e.g., <7>(x)=supie/ {/—ir2pix, t)}.

Now we let XA be a lifting for QiA, S) where S is suitable, AA, a general-

ized lifting which extends XA, and A, any generalized lifting for X. That is

A^:£2*(^, S)^A* and A:Q.*iX, S)-+X* with

AAia, co, s)(s) = a,       pAAia, co, s) = co,

AA(a, co, 0) = XA(a, co),       A(x, co, s)(s) = x,   and   pA(x, co, s) = a>.

Next, define a map k:Q(X, S)—>-I by

k(x, to) = max{<£(x), <¡>(A(x, co, Q)(<p(x)))}.

Note that 0_</S(x)=zí(x, w)=l and k(x, co)=0 if and only if x e A. Also,

ttxp(A(x, co, 0)(cf>(x)), 1) e A whenever k(x, co)<l. For convenience later

we define/ hy j(x, w) = (j>(x)+(\—k(x, co)).

Finally, we define X:Q.(X, S^X1 by

(1) 1(jc, co)(/)=7r1/3(A(x, co, 0)(/), //<£(*)) for 0 = /<^(x),

(2) Xix, oj)i<pix)) = 7TxPiAix, ox, 0)(0, 1),

(3) X{x, co)(i)=A^(A(x, co)i<f>ix)), co, <?S(x))(/) for rf>(x)<t^j(x, co), and

(4) X(x, oS)(t) = A(X(x, ox)(j(x, co)), co,j(x, co))(t) forj(x, co)^/=l.

To see that X is well defined first note that formula (3) is only used

when <p(x)<j(x, co) or, equivalently, when k(x, co)<l. In this case we

have noted that ■n-1p(A(x, co, 0)(<f>(x)), 1) e A. That is, from formula (2),

X(x, co)(<p(x)) eA. Thus A^(A(x, co)(t/.(x)), co, <f>(x)) is defined as needed
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in (3). The other aspects of the fact that X is well defined are easier to

check and are left to the reader.

In order to prove that X is continuous we consider closed sets Cx, C2,

and C3 in O (A, S) x / defined by

Cx = {((x, co), t) 10 ¿ t £ <p(x)},

C2 = {((x, co), t) | <p(x) s" t £j(x, co)},

and

C3 = {((x, co), /) \j(x, co)^t^ 1}.

Formulas (1) and (2) yield continuity on Cx; formulas (2) and (3) yield

continuity on C2; and formula (4) yields continuity on C3.

Necessity Proof. Let S be a suitable subset of B1 and XY : Q( Y, S)->-

Yr<= (Xuf Y)1 be a lifting for <&. Now recall that ílflu, Y, S) is naturally

homeomorphic to Q.(X, 5)u; Í2(F, A). Thus it will suffice to find a map

y:Q(X,S)^(XKjfY)T such that y\Q.(A, S)=XY °/ For then we can

set A = yU} XY to obtain a lifting for Í2(AU/ F, S) which extends Ay.

Again we use the "cofibration maps" p and <j> as in the proof of the

special case.

Also, we use the result of the special case to choose a lifting Xx for

Q(X, S) such that XX\Q(A, S) is a lifting for Cl(A, S). Using these maps

we define a map m:Q(X, 5)-»-/ by m(x, co)=sup¡6/ {</>(X x(x, co)(t))}. This m

has the property that m(x, co)=0 if and only if x e A. Also, m(x, «)<1

implies that -nxp(Xx(x, co)(t), I) e A for each / e /.

Next we let v:XyY->-X\JfY denote the natural map of the disjoint

union of X and Y onto the adjunction space indicated. Finally, we let

Ar be a generalized lifting for Q.*(Y, S) which extends XY. Now the

required y can be defined by the following formulae:

(1) y(x, co)(t) = vnxp(Xx(x, co)(t), t/m(x, co)) when 0^t<m(x, co),

(2) y(x, co)(m(x, co))=vrrxp(Xx(x, co)(m(x, co)), 1), and

(3) y(x, co)(t) = v(AY(firxp(Xx(x, co)(m(x, co)), I), co, m(x, co))(t)) when

m(x, co)</^l.

Note that formula (3) is used only when m(x, co)<l and in this case,

as was noted above, irxp(Xx(x, co)(m(x, co)), 1) e A. Consequently, y is

well defined in formula (3). It is easy to verify that y is well defined on

all of £1(X, S). The continuity of y can be checked by showing continuity

on each of the closed subsets Dx and D2 of Q.(X, S)xl:

Dx — {((x, co), t) | 0 < t ^ m(x, co)},

D2 = {((x, co), t) I m(x, co) < t ^ 1}.
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Sufficiency Proof. We let Y=AxI, q=p\A ° ttx and/(a)=(a, 0).

Also let S=B the set of constant paths in B and consider XY : Í2( Y, S)-*-

Y^iXUfY)1 defined by XYHa, s), p~ia))it)=ia, s+il-s)t). (For any

point z, z denotes the constant path at z.) The hypothesis guarantees a

lifting X:0(A u, F, S)^iXUf Y)1 which extends XY. We obtain 9SxI-+

¿Thy pix, ?) = a(x,/z~(x))(/). Here we identify X with its image in X VfY.

We observe that p is a retraction since p(x, 0) = A(x,/z~(x))(0)=xand, if

aeA, pia,t) = Xia,p~ia))it) = XYiia,Ç>),p~ia))it) = ia,t). The lifting

property of X assures that p will preserve fibers. This completes the proof

of the theorem.

4. Some remarks, examples, and questions. Returning to the definition

of pairing we note that for 3C and sé as above various types of pairing

and strong-pairing could be defined. For pairing we would require that

some lifting of a certain type for sé extend to such a lifting for 3t'. For

strong-pairing we would require that each lifting of a certain type for sé

extend to such a lifting for 3C. We could vary the meaning of "a certain

type." Two specific variations are indicated as follows:

(1) require the liftings only for S=B* rather than all suitable S^B1

and obtain a definition of <SC', sé) being Bl-paired and strongly-Bl-paired,

(2) let ACHP stand for the absolute covering homotopy property and

obtain definitions for i¡£, sé) being ACHP-paired or strongly-ACHP -

paired.

The exact formulation of these notions is left to the reader. We shall

mention some relationships between these and other pairings. See Figure 1

where we suppose throughout that 2£ and sé are fibrations with ¿F as

above.

The arrows in Figure 1 indicate implications easily verified or following

from the proof of Theorem 1. The equivalence of (2), (3) and (5) follows

from the statement and proof of Theorem 1. That (1) implies (3) is easily

proved using a regular lifting function (that is, one which lifts constant

paths to constant paths), using S=Bf rather than S=B and proceeding

as in the proof of Theorem 1.

The following examples show that certain implications do not hold:

(4)=t>(3). Consider A"the comb space defined by X={ix, y) e plane | 0^

x^l andj=0}U{(x,Replane10^1,x=0, 1, ¿, x, . . -},^={(0, 1)},
B=a point. Here i¡£, sé) is not a cofibration since A is a deformation re-

tract of X without being a strong deformation retract. On the other hand,

the fact that B is a point makes the strong-ACHP-pairing easy to verify.

(9)4>(7). Consider i$~, sé xl) where l3C,sé) are as in the preceding

example. Since iSC, sé) is not a cofibration, L9~,séxl) is not strongly-

paired, or equivalently (since B is a point), is not strongly-57-paired.

However, LT ,séxï) is paired because B is a point.
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(11)4>(9). Here we let P(X) denote the nonregular path fibration given

in [4]. That is, for an uncountable set J with the discrete topology let

X={xeIJ\xQ)=0 for at most one ye/} and PiX)=iXI,p, X) with

/>(<x)=a(l). As before, we let X denote the constant paths in X and

PiX) denote the trivial fibration (X, p | X, X). It is easy to see that

(P(X), P(X)) is not cofibration since then there would be a map <j>:yI^>-X

with (f>'1(0) = X. Such a map would insure a regular lifting for any fibration

over X [4]. The uncountability of J is crucial to the nonexistence of such a

<j> and, furthermore, this uncountability can be used in a usual fashion to

show that (P(X), P(X)) is not even paired. The unique identity lifting for

P(X) cannot be extended to a lifting for P(X). Details are left to the reader.

We raise the following questions : Does (7) imply (6) ? Does (6) imply

(4)? Does (3) imply (4)? While the three pairing notions (8), (9), and

(10) are equivalent it seems that probably the analogous strong-pairing

notions, that is, (7), (6) and (4), are not equivalent. The "natural"

method for proving (7) implies (6) or (6) implies (4) would require a kind

of "intermediary-extension property" which may not hold in general.

We conclude with the following remark on another failure for the

strong-pairings:

The properties of being paired or being cofibered are both preserved by

pullbacks. But, it appears that the strong pairings properties may fail to

be so preserved. At least, here again, the "natural" method of proof will

not work.
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