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NONNEGATIVE  MATRICES  WITH

NONNEGATIVE INVERSES

RALPH DEMARR

Abstract. We generalize a result stating that a nonnegative

finite square matrix has a nonnegative inverse if and only if it is

the product of a permutation matrix by a diagonal matrix. We con-

sider column-finite infinite matrices and give a simple proof using

elementary ideas from the theory of partially ordered linear

algebras.

In [1] the authors show that a nonnegative square matrix has a non-

negative inverse if and only if its entries are all zero except for a single

positive entry in each row and column. In this note we generalize this

result and simplify the proof as well.

Let A denote the real linear algebra of all column-finite infinite matrices

with real entries. We partially order A as follows: [a,^]^ [/?,-,-] if and only

if a-ij^ßij for all i,j. Thus, A is a partially ordered linear algebra (pola)

and if 1 denotes the identity matrix, then 0^1. See [2] for the precise

definition of a pola. An example will illustrate the result to be obtained.

Let x=[olu] and y=[ßn] be defined as follows: a,3=1 if i=j+\ and is

zero otherwise; ßa = \ if 7'=/+I and is zero otherwise. Thus, O^x, O^y

and O^xy^l^yx. Note that each column of x contains exactly one

positive entry and each row of x contains at most one positive entry.

Theorem. Let A be the pola described above. If x, y g A, O^x, O^y

and Q^xy^l^yx, then each column of x contains exactly one positive

entry and each row of x contains at most one positive entry. The conclusion

applies to the matrix y if we interchange the words "row" and "column".

Proof. Define d=yx— I 5i0and note that 1 -\-d<(\ +d)2=yxyx^yx =

]+d since xy<\. Hence, \+2dz%(l+d)2^\+d, which means d^O.

Thus d=0 and yx=\, which means that y is a left inverse for x. Hence,

each column of x must contain at least one positive entry. Next construct

a matrix z so that O^z^x and each column of z has only one positive

entry and this entry is equal to the corresponding entry in the matrix x.
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Note that O^zy^xyS 1, which means that zy and xy are diagonal

matrices. Hence, (zy)(xy) = (xy)(zy). Now z = (zy)(xy)x = (xy)(zy)x=x(yz)

and 0^yz^yx=\, which means that yz is a diagonal matrix. Using

elementary properties of matrix multiplication and the fact that x and z

have one positive entry in common in each column we see that yz=\

and therefore x=z. Hence, x has exactly one positive entry in each column.

The example above shows that some rows of x may contain only zeros.

We show that x has at most one positive entry in each row. Let us now

construct a matrix w so that O^m ^x and each row of w has only one

positive entry if the same row of x has a positive entry in it and this

entry is equal to the corresponding entry in the matrix x. Now w—

(wy)x and since O^wy^xy^l, we see that wy is a diagonal matrix.

The same reasoning applied above to the matrix z shows that w=x.

Hence, x has at most one positive entry in each row.
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