OPERATORS ASSOCIATED WITH A PAIR OF NONNEGATIVE MATRICES

GERALD E. SUCHAN

ABSTRACT. Let $A_{m \times n}$, $B_{m \times n}$, $X_{n \times 1}$, and $Y_{m \times 1}$ be matrices whose entries are nonnegative real numbers and suppose that no row of A and no column of B consists entirely of zeroes. Define the operators U, T and T' by $(UX)_i = X_i^{-1}$ [or $(UY)_i = Y_i^{-1}$], $T = UB^tUA$ and $T' = UAUB^t$. T is called irreducible if for no nonempty proper subset S of $\{1, \dots, n\}$ it is true that $X_i = 0, i \in S$; $X_i \neq 0, i \notin S$, implies $(TX)_i = 0, i \in S$; $(TX)_i \neq 0, i \notin S$. M. V. Menon proved the following Theorem. If T is irreducible, there exist row-stochastic matrices A_1 and A_2 , a positive number θ , and two diagonal matrices D and E with positive main diagonal entries such that $DAE = A_1$ and $\theta DBE = A_2^t$. Since an analogous theorem holds for T', it is natural to ask if it is possible that T' be irreducible if T is not. It is the intent of this paper to show that T' is irreducible if and only if T is irreducible.

Suppose that each of m and n is a positive integer. Let $A_{m \times n}$ and $B_{m \times n}$ be matrices whose entries are nonnegative real numbers and suppose that no row of A and no column of B consists entirely of zeroes. Let $X_{n \times 1}$ and $Y_{m \times 1}$ be matrices whose entries are taken from the extended real nonnegative numbers. Define the operator U by $(UX)_i = X_i^{-1}$ [or $(UY)_i = Y_i^{-1}$] and let $0^{-1} = \infty$, $\infty^{-1} = 0$, $\infty + \infty = \infty$, $0 \cdot \infty = 0$, and if $\alpha > 0$, $\alpha \cdot \infty = \infty$ [1]. Define the operators T and T' by $T = UB^tUA$ and $T' = UAUB^t$ where B^t is the transpose of B. Clearly

$$(TX)_i = \left(\sum_{i=1}^m b_{ii} \left(\sum_{k=1}^n a_{ik} X_k\right)^{-1}\right)^{-1}.$$

T is called irreducible if for no nonempty proper subset *S* of $N = \{1, \dots, n\}$ is it true that $X_i = 0$, $i \in S$; $X_i \neq 0$, $i \notin S$, implies $(TX)_i = 0$, $i \in S$; $(TX)_i \neq 0$, $i \notin S$. *T'* is defined to be irreducible analogously.

M. V. Menon [2] proved the following.

THEOREM 1. If T is irreducible, then there exist row-stochastic matrices A_1 and A_2 , a positive number θ , and two diagonal matrices D and E with positive main diagonal entries such that $DAE = A_1$ and $\theta DBE = A_2^t$.

Received by the editors March 5, 1971.

AMS 1970 subject classifications. Primary 15A48; Secondary 15A15, 15A51.

Key words and phrases. Nonnegative matrix, stochastic, irreducible.

Since an analogous theorem holds for T', one would hope that T' might be irreducible even if T is not. However, it is the intent of this paper to prove the following result.

THEOREM 2. T' is irreducible if and only if T is irreducible.

PROOF. If T' is not irreducible then there is a nonempty proper subset S of $M = \{1, \dots, m\}$ which has the property that if $Y_{m \times 1}$ is such that $Y_i = 0$, $i \in S$, $Y_i \neq 0$, $i \notin S$, then $(T'Y)_i = 0$, $i \in S$, $(T'Y)_i \neq 0$, $i \notin S$. Let $Z_{n \times 1} = UB^tY$, put $E = \{i \in N: Z_i = \infty\}$, and let E' be the complement of E in N.

- (1) If $i_0 \in S$ then there exists $j_0 \in N$ such that $a_{i_0 j_0} (\sum_{k=1}^m b_{k j_0} Y_k)^{-1} = \infty$. Hence $Z_{j_0} = \infty$ and thus E is not null.
- (2) Let S' be the complement of S in M so that if $i_0 \in S'$, then there exists $j_0 \in N$ such that $\infty > a_{i_0 j_0} (\sum_{k=1}^m b_{k j_0} Y_k)^{-1} > 0$. Hence $\infty > Z_{j_0} > 0$ and E' is not null.
- (3) Let $X_{n\times 1}$ be defined by putting $\infty>X_i>0$ if $i\in E$ and $X_i=0$ if $i\in E'$. If $X_{i_0}=0$ then $\infty>(\sum_{j=1}^m b_{ji_0}(\sum_{k=1}^m a_{jk}Z_k)^{-1})^{-1}>0$ and hence there exists $j_0\in M$ such that $\infty>b_{j_0i_0}>0$. Thus $\infty>\sum_{k=1}^n a_{j_0k}Z_k=\sum_{k\in E} a_{j_0k}Z_k+\sum_{k\in E'} a_{j_0k}Z_k>0$ so that $a_{j_0k}=0$ for $k\in E$. Therefore, if $X_{i_0}=0$, then $(TX)_{i_0}=0$.
- (4) For $i_0 \in E$, put $F = \{j \in M : b_{ji_0} = 0\}$ and let F' be the complement of F in M. Since $\infty > X_{i_0} > 0$ then $(TZ)_{i_0} = \infty$ so that

$$\sum_{j=1}^{m} b_{ji_0} \left(\sum_{k=1}^{n} a_{jk} Z_k \right)^{-1} = \sum_{j \in F} b_{ji_0} \left(\sum_{k=1}^{n} a_{jk} Z_k \right)^{-1} + \sum_{j \in F'} b_{ji_0} \left(\sum_{k=1}^{n} a_{jk} Z_k \right)^{-1} = 0,$$

and hence there exists $j_0 \in F'$ so that $b_{j_0i_0} \neq 0$. Thus $\sum_{k=1}^n a_{j_0i_k} Z_k = \infty$ so that there exists $k_0 \in E$ such that $\infty > a_{j_0k_0} X_{k_0} > 0$. Therefore if $\infty > X_{i_0} > 0$ then $\infty > (TX)_{i_0} > 0$.

It immediately follows from (1), (2), (3), and (4) that T' is irreducible if T is irreducible. A similar argument proves that T is irreducible if T' is irreducible.

REFERENCES

- 1. R. A. Brualdi, S. V. Parter and H. Schneider, *The diagonal equivalence of a non-negative matrix to a stochastic matrix*, J. Math. Anal. Appl. 16 (1966), 31-50. MR 34 #5844.
- 2. M. V. Menon, Some spectral properties of an operator associated with a pair of nonnegative matrices, Trans. Amer. Math. Soc. 132 (1968), 369-375. MR 37 #1394.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HOUSTON, HOUSTON, TEXAS 77004